
MODELING MULTITHREADED APPLICATIONS USING PETRI NETS

KRISHNA M. KAVI
ALIREZA MOSHTAGHI

AND
DENG-JYI CHEN

Since most modern computing systems contain multiple processing elements, applications

are relying on multithreaded programming techniques that allow a program to execute multiple

tasks concurrently to take advance of the processing capabilities. Multithreaded programs are

more difficult to design and test because of the non-deterministic execution orders and

synchronization among the threads. Different approaches can be used to test Multithreaded

Applications. In our approach we use Petri nets to represent the key elements of interactions

among threads to identify potential problems such as race conditions, lost signals and deadlocks.

A tool called C2Petri has been developed which converts C-Pthreads programs to the equivalent

Petri net model. This tool helps verification of Pthread-based programs. At present the tool has

limited capabilities and we hope to expand the capabilities of our tool in the near future.

Key Words. Pthreads, Petri nets, Race Conditions, Deadlocks, Lost Signals

2

MODELING MULTITHREADED APPLICATIONS USING PETRI NETS

1. INTRODUCTION

In this paper we present an approach and a tool that converts the complex behavior

(particularly the synchronization behavior) of multithreaded programs written in C, using the

Pthreads libraries to Petri nets for the purpose of analysis and testing of multithreaded programs.

Our goal is to show that the complex behavior of the multithreaded applications may be

expressed graphically as Petri nets, which can then be analyzed to locate faults in the program.

Such an higher level abstraction facilitates for the identification of key program segments that

must be thoroughly exercised to identify errors.

Concurrent systems are inherently nondeterministic. For example, given the same input, we

can execute a concurrent program several times and get several different correct answers, or get

the same answer in three different orders. The correctness of concurrent programs is defined by

the Sequential Consistency model of Lamport [8] which states the behavior of a concurrent

should be the same as if the program is run sequentially by interleaving the instructions from the

concurrent components. However, since many correct orders are permitted by the definition, this

makes concurrent systems hard to test. Concurrent software is vulnerable to a special set of faults

resulting from: Improper Synchronization, Deadlock, Starvation, Lost Signals, and Race

Conditions. All of these errors are in addition to the types of errors one would find in a

sequential program. The words error and fault are used interchangeably in this paper. There are a

number of strategies for testing concurrent applications. Each strategy considers a specified

model for the Program Under Test (PUT). These models reflect certain characteristics of PUT,

which can be analyzed to pinpoint faults in the program. The more comprehensive the model is,

3

the more faults that can be detected. But fault detection is only one part of the problem; the

model must provide the means of relating the faults to the source code. Our primary goal in this

research is to make a model of PUT, such that it is abstract, correct, descriptive, and enable

mapping back to the Program Under Test.

The Pthreads library can be used to implement multithreaded programs with C and C++

languages. Like all other concurrent programs, the C programs using Pthreads library suffer from

synchronization faults caused by inappropriate programming practices. More recently tools are

becoming available that can be used to detect synchronization errors (see for example, Visual

Threads [12], LockLint [14], Flavors [4], ThreadMon [2]). These tools however, are limited in

their scope and/or capabilities. They are either designed for a specific multithreaded library

(e.g., Solaris Threads[14]); designed to detect only specific types of concurrency conditions (e.g.,

race conditions [12]); or designed primarily to monitor program’s execution for the purpose of

improving its performance [2]. In this paper, Petri nets are used to represent multithreaded C-

programs. Our emphasis is on the detection of all synchronization errors. Although we

demonstrate our research using only Pthreads in this paper, our approach of using Petri Nets is

applicable for other multithreaded libraries and languages.

For the purpose of this paper we consider three major synchronization errors.

a). Race Conditions. In multithreaded programs concurrent threads interact with each other

through shared memory. Improper access to shared data can cause data races. Data races are easy

problems to introduce: simply accessing a variable without first acquiring an appropriate lock

can cause a data race. Data races are generally very difficult to detect. Symptoms manifest only

if two threads happen to access the improperly protected data at nearly the same time. Thus a

program with data race may run correctly for months without showing any signs of the problem.

4

It is extremely difficult to exhaustively test all concurrent states of a program for even a simple

multithreaded program; so conventional testing and debugging are not adequate defenses against

data races. Data race is especially important when the critical section of the code consists of non-

atomic operations.

b). Deadlocks. Every computer science student is familiar with deadlock situations from courses

on operating systems[13]. A deadlock may occur when multiple processes share resources and

the operations within the processes require access to more than one of those resources. This

means that each process will need to get a lock for each of the resources before performing its

operation. If different processes use a common set of resources, but the order in which they

acquire the locks is inconsistent, there is a potential for a deadlock.

c). Lost signals. In multithreaded systems, threads can also interact by using signals to

communicate the occurrence of certain events or conditions. Typically one or more threads wait

on a condition; some other thread signals the waiting threads when the condition is met. In many

multithreaded languages and libraries, signals are not saved. In other words, if a signal arrives

before any thread executed a “wait” on that signal, the signal is lost, causing the waiting thread

to be blocked indefinitely. Although this type of an error manifests immediately (in term of

blocked threads), the cause (i.e., lost signal) is very difficult to locate. None of the existing tools

address lost signals.

1.1 Brief overview of Petri nets.

Petri net is a formal and graphically appealing model, which is appropriate for modeling

concurrency. Petri nets have been researched since the beginning of the 1960's, when Carl Adam

Petri defined the model. The reader referred to Murata’s paper [9] for a comprehensive survey of

Petri nets. A Petri net is a bipartite directed graph, together with an initial state called the initial

5

marking, M0. The two kinds of nodes are called places and transitions; where arcs are either from

a place to a transition or from a transition to a place. In graphical representation, places are

shown as circles and transition as bars. Arcs are labeled with weights (positive integers), where a

j-weighted arc can be interpreted as the set of j parallel arcs. Labels for unit weight are usually

omitted. A marking (state) assigns to each place a nonnegative integer. If a marking assigns to

place p a nonnegative integer k, we say that p is marked with k tokens. Pictorially, we place k

black dots (tokens) in place p. A marking is denoted by M, an m-vector, where m is the total

number of places. The pth component of M, denoted by M(p) is the number of tokens in place p in

marking M. A formal definition of Petri net is given in Figure 1.

The behavior of many concurrent systems can be described in terms of system states and

their changes. In order to simulate the dynamic behavior of a system, a state or marking in a Petri

net is changed according to the following transition (firing) rules [9]:

1. A transition t is said to be enabled if each input place p of t is marked with at least w(p,t)
tokens, where w(p,t) is the weight of the arc from p to t.

2. An enabled transition may or may not fire (depending on whether or not the event
actually took place).

3. A firing of an enabled transition t removes w(p,t) tokens from each input place p of t and
adds w(t,p) tokens to each output place p of t, where w(t,p) is the weight of the arc from t
to p.

 Figure 1: Formal definition of Petri net

A Petri net is a 5-tuple, PN = (P,T,F,W,M0) where:
 P= {p1, p1, … , pm} is a finite set of places
 T= { t1, t1, … , t1} is a finite set of transitions
 F (P T) (T P) is a set of arcs (flow relation)
 W: F {1,2, …} is a weight function
 M0: P {1,2, …} is the initial marking
 P T = and P T

A Petri net structure N =(P,T,F,W) without any specific initial marking is denoted by N.
A Petri net with the given initial marking is denoted by (N, M0).

6

2. MODELING PTHREAD CONSTRUCTS

We limit our scope in this paper to model C programs using Pthread libraries. However, Petri

nets can be used to model other multithreaded libraries and languages. In order to model the

Pthread library, the components of this library are classified into two categories: the Pthreads

control variables and the Pthread-functions.

2.1 Pthread Control Variables

The Pthread library has three essential control variable types: mutexes, condition variables,

and threads. The Petri net models of these variable types are shown in Figure 2. These models

are easier to understand when they are used in complete programs.

2.1.1. Mutex variables are the simplest, they are declared with the abstract data type

Pthread_mutex_t. A mutex is used to implement the mutual exclusion in a concurrent program.

A place with an initial token can model a mutex variable; Pthread_mutex_lock() causes the token

to be removed from the place and Pthread_mutex_unlock() places a token back in the place.

When the token is unavailable to a thread executing mutex_lock, the thread will block. Although

(c) mutex (b) thread variable

Figure 2: Petri net models of (a) condition variables, (b) thread and (c) mutex

p4

p3

p2

p1 t1

t2

signal

wait

(a) condition

create

threadEnd

p1 p3p2

p4

p5

t1

t1

join

t3 release

7

it is possible to model FIFO ordering on releasing blocked threads, we will assume a non-

deterministic release of blocked threads, relying on the conflict presented by Petri net models.

2.1.2. Condition variables provide the means for signaling among threads. They are declared

with the abstract data type Pthread_cond_t and are used by Pthread functions

Pthread_cond_signal() and Pthread_cond_wait(). Condition variables are modeled with two

transitions (t1 and t2) and four places (p1, p2, p3 and p4). The mechanism of this model is better

understood when the behavior of Pthread_cond_wait() and Pthread_cond_signal() are

explained.

2.1.3. A thread variable is declared using Pthread_t. The Petri Net model of a thread variable

must hold the information about the thread's creation and termination. Five places and three

transitions in Figure 2(b) (p1, p2, p3, p4, p5, t1, t2 and t3) model the behavior of thread

variables. Thread variables are used by Pthread-functions: Pthread_create() and Pthread_join()

which are explained below.

It should be noted the number of places and transitions used to model the key Pthread control

variables indicates the potential state space (or markings) complexity. The maximum number of

states in our case is 2p, where p is the number of places, although in most cases the number of

states is much smaller because of only finite number of transitions that are enabled in any

marking. In addition, since our tool permits analyzing program segments, the complexity can be

more easily manageable.

2.2. Pthreads-functions

Due to space limitations, in this paper we will describe only the Petri net models of the most

relevant Pthread-functions. These functions capture the essential synchronization features of the

Pthread library, and understanding the behavior of these functions is essential to recognize the

8

role of the other Pthread-functions. In Pthread it is possible to change the behavior of a Pthread

function by changing attributes for the various thread control variables, including

Pthread_thread_t, Pthread_mutex_t, and Pthread_cond_t. We will delay the description of our

approach to modeling attributes to a later section and present the Petri Net models of relevant

Pthread functions with default attribute values. More specifically, in this section we will describe

Petri net models for Pthread_create(), Pthread_mutex_lock(), Pthread_mutex_unlock(),

Pthread_cond_wait(), Pthread_cond_signal(), Pthread_exit(), and Pthread_join().

Pthread_cond_broadcast() is not described here, since it can be modeled as an extension

Pthread_cond_signal(). Obviously Pthread-functions can only be understood when they are used

in concurrent programs. For example, the operation Pthread_create() is better understood when

it is used along with a Pthread_join(). Our goal in this research is to detect synchronization-

related errors. For example, in an attempt to join with a thread that is yet to be created (or

exited), the will cause an error condition but the thread is permitted to continue beyond the

Pthread_join call. Our model will detect such cases to facilitate better design of Pthread

programs.

2.3. Thread Creation and Termination

Pthread_create(Pthread_t *thread, Pthread_attr_t *attr, void *
(*start_routine)(void *), void *arg);

Pthread_join(Pthread_t thread, void **status);

Figure 3 illustrates the interconnection between the Petri net models for Pthread_create(),

Pthread_join() functions, and that of the thread variable of the thread being created. The left

dotted box represents the Petri net model of Pthread_join(), and the right dotted box represents

the model of Pthread_create() functions. The graph in between the two dotted boxes is the

representation of the Pthreads variable.

9

As can be seen from Figure 3 Pthread_create() can be modeled using a single transition. In

this model, the two outgoing solid arcs from transition tC illustrate the process of thread creation.

The outgoing dotted arc from tC shows that the creating thread continues the execution. The

complication of this model is primarily to handle the error behavior of Pthread_join() function.

If a thread attempts to join with a thread that is not yet created, Pthread_join() will not block. It

will receive an error code but allowed to continue its execution. Place p1 models this behavior. If

the thread being joined does not exist, there will be no token in place p2. This will disable

transition t1, thus place p1 will remain marked and transition tJ can consume this token and

continue its execution. The token in p1 will be replenished to enable other joining threads. The

behavior of Pthread_join() is quite different when the joined thread exists. In this case, p2 is

marked and t1 will consume tokens from p1and p2, placing one token in p4, and disabling tJ

from firing, thus blocking the joining thread.

Once the joined thread exits, a token will be placed in p3, enabling t2, which will place a

token in p1 and p5. Now the blocked thread can continue its execution. AS can be seen from this

Pthread_join function from
the joining thread

p1

p3

p2

p4

p5

t2

t1

t3

pJ

Pthread_create function
from the creating thread

pC

Figure 3 The interconnection between Pthread_create(), the thread variable, and
Pthread_join()

tJ
tC

Rest of the
current thread

Created therad

10

discussion the number of states needed to model Pthread_join is small. The semantics of the case

when multiple threads attempt to join with a single thread differ from implementation to

implementation. For example DEC-threads (the implementation of Pthreads library on DEC-

Alpha) states that the semantics of such a situation leads to unpredictable behavior [3]. Our

model provides a general framework for a variety of semantics associated with this situation. The

unpredictability associated with DEC-threads is modeled by t3. As soon as t2 fires, t3 will be

enabled and there will be a competition between t3 and all of the tJ transitions of the joining

threads. If t3 wins the competition, the token in p1 will be consumed disabling all joining

threads, and no more joining threads will be able to continue. When modeling the case where

only one thread joins with another, t3 and p5 must be eliminated.

2.4. Lock and Unlock Constructs

Pthread_mutex_lock(Pthread_mutex_t *mutex);
Pthread_mutex_unlock(Pthread_mutex_t *mutex);

Pthread-functions Pthread_mutex_lock() and Pthread_mutex_unlock() provide the means for

mutual exclusion in concurrent programs. Their only input argument is the mutex variable.

Critical section

Thread one

pthead_mutex_unlock()

pthead_mutex_lock()

Thread two

t1 t1’

t2 t2’

mutex

Figure 4 Petri net models Pthread_mutex_lock() and Pthread_mutex_ulock()

pthead_mutex_lock()

pthead_mutex_unlock()

Critical section

11

Figure 4 shows the interactions between these two functions using our Petri net model of a mutex

variable. The conflict between t1 and t1’ to consume the token from mutex describes the mutual

exclusion concept. The initial token in mutex allows only one of the threads to continue its

execution. Once again, the number of states to represent the availability of a lack should not be

an impediment to using Petri nets for modeling concurrent programs.

2.5. Signal and Wait

Pthread_cond_signal(Pthread_cond_t *cond);
Pthread_cond_wait(Pthread_cond_t *cond, Pthread_mutex_t *mutex);

Figure 5 illustrates how the mechanism of “signal” and “wait” in the Pthread library can

be modeled using a Petri net. The left dotted-box shows the Petri net model of

Pthread_cond_wait() and the right dotted-box that of Pthread_cond_signal(). As mentioned

previously, if a signal is sent by a thread and no thread is waiting for that signal, that signal is

lost. Thus a thread that executes a Pthread_cond_wait() right after the signal is lost, has to wait

until the next signal arrives, and if not, will be deadlocked. In the model illustrated in Figure 5,

the conflict between t1 and t2 for the token in p2 distinguishes between the cases when the

p4
p3

p2

p1 t1

t2

pthead_cond_signal()

pthead_cond_wait()

mute

Waiting thread Signaling thread

Figure 5: Petri net models Pthread_cond_wait() and Pthread_cond_signal()

tw1

tw2

ts

12

waiting thread executed Pthread_cond_wait() before the signal is sent or after the signal is lost.

When the signaling thread executes Pthread_cond_signal(), ts places a token in p2 and the

execution of the thread continues. At this point, the conflict between t1 and t2 starts. If the

waiting thread has already executed the Pthread_cond_wait() function, the token from p1 will be

consumed by tw1 and a token will be placed in p3. Transition t1 will lose the conflict with t2

and t2 will fire, placing a token in p4. This will prepare the situation for tw2 to fire as soon as

mutex is available. For the case when the waiting thread did not execute Pthread_cond_wait()

when the signal arrived, t1 will win the conflict with t2 for the token in p2. When t1 fires, the

tokens from p1 and p2 will be consumed. The loss of the token in p2 models the loss of the

signal. Although a bit more complex, the Petri net shown in Figure 5 represents manageable

complexity in terms of the number of markings that are possible (less than 10).

2.6. An Example

To illustrate how these Petri net models can be combined together to represent a complete

program, an example program and its Petri net model are provided in Figure 6. The C-Pthread

program in this example implements a simple Producer/Consumer problem. The producer thread

generates data items inside a loop and signals the consumer after each item is ready. The

consumer waits for the signal from the Producer and consumes the item when the signal is

received. This is a good example to illustrate the order of waiting for a signal and sending a

signal. The model in Figure 6 is the output from our tool C2Petri. Each thread is enclosed in a

box and the box is identified by a line number that corresponds to the line number in the C

program containing the call to Pthread_create() function. This information is used to map errors

13

back to source code. The source code line number is extracted by our tool so that the user can be

provided with a means of locating the error in the source. Each of the Pthreads-control variables

(mutexs, conditions, and threads) is also enclosed in separate boxes.

2.7. Other Pthreads Functions

So far we have illustrated how Petri nets can be used to model essential Pthread constructs

with default attribute values. In this section will briefly outline how to model other attribute

values. A complete description of Petri nets for each possible attribute value will consume too

much space to be of value and the user is referred to [10] for details

#include <Pthread.h>
int a;
int b;
Pthread_t th1;
Pthread_t th2;
Pthread_mutex_t mu;
Pthread_cond_t cond;

int main()
{
 Pthread_create(&th1,NULL,consumer,NULL);
 Pthread_create(&th2,NULL,producer,NULL);

 Pthread_join(th1,NULL);
 Pthread_join(th2,NULL);
}

int consumer()
{
 Pthread_mutex_lock(&mu);
 while(1)
 {
 Pthread_cond_wait(&cond,&mu);
 b=a;
 }
 Pthread_mutex_unlock(&mu);
}

int producer()
{
 while(moreDate())
 {
 Pthread_mutex_lock(&mu);
 a=getNewValueForA();
 Pthread_mutex_unlock(&mu);
 Pthread_cond_signal(&cond);
 }
}

Figure 6: A producer/consumer program and the Petri net model

14

2.7.1. Functions Related to Thread Creation

The following is a partial list of functions that can effect or be affected by attribute values

associated with Pthread variables.

Pthread_create()
Pthread_attr_init()
Pthread_attr_setdetachstate()
Pthread_exit()
Pthread_join()
Pthread_detach()

The most important attribute of a thread is whether it is detached or joinable. The Petri net

model shown in Figure 3 reflected the models for Pthread_create() and Pthread_join() using

default attributes; in this case threads are joinable. If a thread attempts to join with a detached

thread, however, an error condition is returned by Pthread_join() and the joining thread

continues beyond the join. To model the behavior of a detached thread, the arcs from right dotted

box to p2 and p3 in Figure 3 must be omitted.

So far we have not described how Pthread_exit() can be modeled. This function terminates

the thread executing the exit function. The Petri net model of Pthread_exit() requires an arc from

the point in the model where Pthread_exit() is called to the place p3 in Figure 3. Figure 7 shows

how a Pthread_exit() function can be modeled. Note that since the while loop in func1() has no

contribution to the synchronization, its model is not shown completely. The figure also shows

that the Petri net mode of Pthread_exit() is not complex.

15

2.7.2. Functions Related to Mutexes

The following is a partial list of functions that can effect or be affected by attribute values

associated with mutex variables.

Pthread_mutex_init()
Pthread_mutexattr_init()
Pthread_mutexattr_settype()
Pthread_mutex_lock()

Pthread_mutex_unlock()

The Petri net models of Pthread_mutex_lock() and Pthread_mutex_unlock() described in

previous sections (Figure 4) are based on default attributes of mutex variables. The behavior of

Pthread_mutex_lock() and Pthread_mutex_unlock() for other attribute values (e.g., priority

inheritance) depends on the implementation environment, requiring different models for each

implementation. The Petri net models for representing priority inheritance is more complex and

the complexity depends on the implementation. Since we are only interested in the abstract

representation of abstract synchronization properties, the actual order of acquiring locks is not

considered in this work.

#include <Pthread.h>
Pthread_t tid;

int main(){
 Pthread_create(&tid,NULL,func1,NULL);

 Pthread_join(tid);
}

void *func1(void *arg){
 if(arg == NULL)
 Pthread_exit(0);

 while(arg)
 {
 printf("this is the dumbest code I've ever wrote\n");
 }
}

Figure 7: A program with Pthread_exit() function call

Pthread_exit(
) function

16

3. C2PETRI TOOL DESIGN

The purpose of modeling a system is to capture and abstract as much useful information from

that system as possible, in such a way as to permit analysis of the system. Modeling of a C

program is no exception. For the purpose of our research not all aspects of a C program are

captured in the Petri net model. We will only concentrate on the concurrency aspects of C

programs using Pthreads. Here we use object oriented design techniques to describe how we

identify key components of C programs using Pthreads. Once the components of a C program are

recognized, its equivalent Petri net can be synthesized. Our approach is similar to that of [5].

3.1 Deriving the Petri net Model

We use a component-based approach to combine Petri net models for specific (and

relevant) C program constructs. This approach simplifies the derivation of Petri nets and permits

analysis of sub-systems more easily since the state space of the entire multithreaded program can

be very large. To better understand our approach, consider the class diagram in Figure 8. A

typical C-program is composed of Functions. A function has only one main Block.

A Block can be composed of many (sub-) blocks, and each (sub-) block may be an IfElse

block, a Loop block or a FunctionCall. A switch statement can be modeled using several IfElse

statements. These blocks are connected together to represent the control flow (or the order of

execution) of the C program statements. Consider the program and associated blocks recognized

by our system as shown in Figure 9. This example program has three functions func1() and

func2() and main().

17

3.2. Component Analysis

In order to generate a Petri net model of complete C programs, it is necessary to develop

Petri net models for each relevant construct. In this paper recursive functions, pointers and arrays

of thread types are not modeled. The Petri net models for these constructs require a dynamic

creation of the Petri net, since the number of recursive calls or the address of the data item

referenced by a pointer is known only at run time. It should be noted that since our tool attempts

Function Block

SwitchIfElseLoopFunctionCall

1 1
1

n

Figure 8: Class Diagram; a model for C programs

1

n 1

0..n

CProgram n1

<ordered>

int main(void){
int i,a;

scanf("%d",&a);
for(i=0;i<50;i++){
if(i<a){
func1();

}
else{
func2();

}

}
}

int func1(void){
return 1;

}

int func2(void){
return 2;

}

:CProgram
"myProgram" :IfElse

"ifBlock"

:Function
"func1()"

:Function
"main()"

:Function
"func2()"

:Block
"elseBlock"

:Block
"mainBlock" :Loop

"for"

:FunctionCall
"func2"

:FunctionCall
"func1"

:Block
"mainBlock"

:Block
"mainBlock"

Figure 9: Object Diagram of the program on left; look at class diagram in Figure 8

18

to model the dynamic interactions among threads, the theoretical correctness of the program can

only be assured by the dynamic creation of Petri nets for representing recursion, pointers and

arrays. However, it should also be pointed out that in most practical cases, one can observe the

behavior by utilizing a limited number of recursive calls, array elements or pointer indirections

to test multithreaded programs and gain confidence in the correctness of the program. Similarly,

the interaction among a large number of threads (e.g., arrays of threads, a linked list of threads)

can be tested by modeling the interactions among a small number (greater than 3) of threads. Our

tool can be extended in manner similar to [1], to build Petri nets dynamically to model recursive

calls and variable of number of threads.

while/for
do-while

Figure 10: Petri net models of program constructs

condition

Loop Block Loop Block

condition

If clause If
clause

Else
clause

if- else

if

19

In order to satisfy the bi-partite nature of Petri net, every component of a C program will be

modeled starting with a place and terminating in a transition. The components can be composed

by connecting the appropriate places and transitions. Figure 10 illustrates this idea.

3.3. Class Analysis

Figure 11 illustrates the Petri net model of the program shown in Figure 9.

A token has been placed in the first place to represent the start of the program and enable the

Petri net (that is, initial Marking). The last node in the Petri net is a sink transition to consume

the token and terminate the execution. By comparing the Petri net model in Figure 11 and the

object diagram in Figure 9, it is easy to recognize that the Petri net can be derived from the

object diagram. For example, in the Petri net model, the loop embraces the if-else statement and

in the object diagram, the for object has a link to the if-else statement object. Our tool C2Petri

Figure 11: Petri net model of program in Figure 9

func1

Loop Block

Program Start

for condition

func2

If condition

Program end

20

accepts a C program and generate the equivalent Petri net model, using the Petri net models for C

program constructs described here (and in more detail in [10]). In our system, memory or access

to program variables and assignment statements are not modeled. However we model control

variables as described in Section 2 (e.g., mutex, condition variables, Pthread type), since they are

essential to describe concurrency, synchronization and states of Pthreads.

3.4. Using C2Petri Tool.

We described the process of generating a Petri net model for a program. Now let us see how

these Petri nets can be used to find defects in the program. The goal here is to find potential

errors and display the path in the program that leads to the faulty situation. Assuming that we

have the Petri net presentation of the program, and a marking that defines a faulty case, the set of

markings leading to the faulty marking exhibits a path in the program that leads to potential

synchronization fault in the program. This is often achieved by presenting the reachable

markings of a Petri net as a graph called Markings graph G. There are a number of tools for

analyzing Petri nets and generating all reachable markings. Such tools can be used to analyze

Petri nets generated by our tool C2Petri. We can identify and trace program errors since we

providing a mapping from faulty markings back to the original program using line numbers. The

line number information for each block can be extracted during the compile time, and kept in the

block object as one of its properties.

The Markings that signify lost signals are discuss previously. A marking M indicates a

deadlock if and only if

• M is a reachable marking of G and
• M has no outgoing transitions.

A marking-graph G is said to be deadlocking if and only if G has one or more deadlock

states. The Pthread program in Figure 12 is a deadlocking program. Its equivalent Petri net and

21

the associated marking-graph are also shown in the same figure. Any marking with tokens in

both p1 and p2 represents a deadlock. In such a case, the tokens in places m and n have been

consumed previously, thus transitions t1 and t2 cannot fire because one of their input places does

not have a token. This situation is very common when locking and unlocking of the mutexes are

inconsistent among the threads. In this example, every path leads to a deadlock, but there are

cases when only a few paths lead to deadlock. Note that since a program must terminate at some

point, the terminating markings appear similar to a deadlock marking. However, once the Petri

net is generated, we can easily distinguish the terminating markings from deadlock markings.

4.SUMMARY AND CONCLUSIONS

In this paper we presented how Petri nets can be used to model Pthread programs and how

the Petri net can be used to detect synchronization errors. Our research is motivated by the lack a

#include <pthread.h>

pthread_t tid1;
pthread_t tid2;
pthread_mutex_t m,n;

int main(){
 pthread_create(&tid1,NULL,func1,NULL);
 pthread_create(&tid2,NULL,func2,NULL);
}

void *func1(void *arg){
 pthread_mutex_lock(&m);
 pthread_mutex_lock(&n);
 /*critical section*/
 pthread_mutex_unlock(&m);
 pthread_mutex_unlock(&n);
}

void *func2(void *arg){
 if(arg!=NULL){
 pthread_mutex_lock(&n);
 pthread_mutex_lock(&m);
 /*critical section*/
 pthread_mutex_unlock(&n);
 pthread_mutex_unlock(&m);
 }
}

Figure 12: A deadlock program and its Petri-Nets model

p1

p2

t2

t1

n

m

22

generic programming model and environment for developing multithreaded applications.

Although we have concentrated on Pthread based applications, our approach can be used for

other multithreaded libraries and languages. Since Petri nets have been studied extensively over

the past 3 decades, and since there a number of analysis tools, multithreaded program

development can benefit from using such tools for the purpose of analysis and testing.

We are in the process of extending the scope of our work to facilitate automatic translation of

concurrent systems specified using formal models based on process algebras into Petri nets.

Previously we developed one such translation from CSP to Petri nets [7]. The resulting Petri nets

can then be analyzed and decomposed into subsystems. These subsystems can be translated into

implementation in any multithreaded language. The work described in this paper aids in this last

phase in generating program stubs for Pthread libaries.

Finally, although the major problem with Petri net based models is the size of the state space,

for our purpose this need not be a major hindrance because, a) portions of programs can be

analyzed and these analyses can be utilized in the overall system analysis, b) the interactions

among a large number of threads can be extrapolated from the analysis of a small number of

threads, and c) the dynamic program behavior such as recursion and pointers can be abstracted

by analyzing a small number of recursions and pointer indirections.

5. REFERENCES.

[1] J. W. Anneck and M. Naedele: “Modeling Hierarchical and Recursive Structures Using Parametric
Petri net” Proceedings of High Performance Computing HPC'99, San Diego, CA, U.S.A., 1999, pp.
445-452

[2] B. M. Cantrill and Thomas W. Doeppner Jr.: “Thread Mon, A Tool for Monitoring Multithreaded
Program Performance”, Department of Computer Science, Brown University Providence, RI
02912-1910.

[3] Dec-Alpha: Pthreads Man Pages, Dec-Alpha system users manual

23

[4] M. B. Dwyer and L. A. Clarke: “FLow Analysis for VERifying Specifications of Concurrent and
Distributed Software”, Technical Report 1999-52, University of Massachusetts, Amherst, Aug.
1999. ftp://ftp.cs.umass.edu/pub/techrept/techreport/1999/UM-CS-1999-052.ps.

[5] M. Heiner: “Petri net Based Software Validation Prospects and Limitations”, The International
Computer Science Institute, University of California at Berkeley, TR-92-022, March 1992

[6] K. M. Kavi, B. P. Bukhles, and U. N. Bhat: “Isomorphism Between Petri net and Dataflow
Graphs”, IEEE Transactions on Software Engineering, Vol. SE-13 No. 10, Nov. 1987.

[7] K.M. Kavi, F.T. Sheldon and S. Reed. "Specification and analysis of real-time systems using CSP
and Petri nets", International Journal of Software Engineering and Knowledge Engineering,
(World Scientific Publishing Company) Vol. 6, No. 2, June 1996, pp 229-248.

[8] L. Lamport. “How to make multiprocessor computer that correctly executes multiprocess
programs”, IEEE Tr. On Computers, September 1979, pp 241-248.

[9] T. Murata: “Petri Nets: Properties, Analysis and Applications”, Proceedings of the IEEE, Vol.77,
No.4, 1989, pp. 541-580

[10] A.R. Moshtaghi. “Modeling Multithreaded Programs Using Petri Nets”, MS Thesis, Dept of ECE,
The University of Alabama in Huntsville, Huntsville, AL 35899, May 2001.

[11] J.P. Queille and J. Sifakis: Iterative Methods for the Analysis of Petri Nets, 1st European workshop
on Applications and Theory of Petri Nets, Springer Verlag, Sept. 1982.

[12] S. Savage, Michael Burrows, Greg Nelson, and Patrick Sobalvarro: Eracer: A Dynamic Data Race
Detector for Multithreaded Programs, ACM Trance on Comp Sys vol. 15 no. 4 Nov. 1997.

[13] A. Silberschatz, P. B. Galvin, and G. Gagne: Applied Operating System Concepts, First Edition,
John Wiley & Sons, Inc, 2000

[14] SunSoft: Lock Lint User's Guide, SunSoft Manual, August 1994.
[15] A.Y. Zerhouni, E. Moudni, and A. Ferney: “On Finding Deadlocks and Traps in Petri net” System

Analysis -Modelling - Simulation (SAMS) 1999, pp. 495-507.

