
An Actor-Based Programming System 

Roy J. Byrd 

Stephen E. Smith 

S. Peter de Jong* 

IBM Thomas J. Watson Research Center 

Yorktown Heights, New York 10598 

ABSTRACT: A programming system is described with 

which applications are built by defining collections of 

communicating objects, called actors. The actor program- 

ming system provides a uniform environment in which 

distributed applications can be automated in a highly mod- 

ular and efficient manner. The system's design is based on 

the formal theory of actors, with certain modifications 

made for the sake of efficiency. We describe our view of 

the actor system, and an implementation of that view. We 

also discuss applications built on, and contemplated for, 

the actor system. 

1. Introduct ion.  

This paper describes a programming system developed 

within the context of the System for Business Automation 

(SBA) project (de Jong (1980), Zloof and de Jong (1977), 

de Jong and Byrd (1980)). In SBA, "boxes" represent 

business objects like documents, files and memos. Initially 

humans operate on the objects. Gradually the business 

processes are automated by imparting intelligence to the 

objects through the 2-dimensional SBA programming lan- 

guage. Eventually one obtains an automated business 

system in which intelligent business objects communicate 

among themselves without human intervention. These 

systems are naturally distributed, and we envision a net- 

work of processing nodes representing the functional com- 

ponents of a business organization, with objects such as 

memos and invoices flowing between these nodes. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

Instead of directly implementing SBA in PL/ I ,  we 

decided to first develop a programming system which pro- 

vides the primitives needed by SBA. Such a programming 

system should support intelligent objects which communi- 

cate via messages, the ability to create instances of objects 

which have common structure and behavior, and the abili- 

ty to easily modify the behavior of an object. 

Our approach was to begin with the actor formalism 

developed at the M.I.T. Artificial Intelligence Lab (Baker 

(1978), Lieberman (1981)), and adapt if for use as a pro- 

gramming system. The actor formalism has the following 

properties, which are ideally suited to our objective. 

1. Instances of actor types are the executing and communi- 

cating objects in the system. Their behavior is speci- 

fied by a "script" and they have memory which per- 

sists between invocations. 

2. An actor communicates with other actors, known as it's 

"acquaintances", via messages. It is transparent to an 

actor sending or receiving a message whether the oth- 

er actor is at the same node or a different node in a 

network of computers. 

3. Actors execute asynchronously, upon receipt of a mes- 

sage. 
4. Actors are highly modular with well defined intorfaces. 

One cannot look inside an actor. One only knows its 

behavior in terms of the types of messages it accepts 

and the way it responds to those messages. 

5. Every object is an actor; in particular, the messages are 

actors. 

The actor-based programming system intentionally 

deviates from a pure actor formalism in the granularity of 

the actor objects, and in the way in which they are de- 

fined. In a pure actor system absolutely everything is an 

actor, actors are defined in terms of other actors, i.e. there 

are no numbers or arrays. In the actor-based program- 

ming system the objects implementing an application be- 

have as actors. However, the internal specification of an 

© 1 9 8 2  ACMO-89791-075-3/82/O06/O067 $00.75 

* Current address: Massachusetts Institute of Technology 

Cambridge, Massachusetts 02139 

67 



actor is PL/I-l ike and contains PL/I-l ike data types. 

While an actor specification can be as small as two lines it 

can legitimately grow to be hundreds of lines. 

Our break from a pure actor formalism is basically 

pragmatic, but is vital to the success of the actor formal- 

ism as a programming discipline. At its origins, actors 

were presented as a new model of computation, not as a 

new programming language (cf. Baker(1978)). Users were 

expected to program in LISP, and use a compiler to gener- 

ate computations in terms of actors. Our objective is a 

system in which users can directly program the actors 

participating in an application. 

In addition, a pure actor system implies an over- 

whelming amount of parallelism and communiaation. 

While this is appropriate for an array of microprocessors 

(cf. Hewitt(1980)), we do not foresee this kind of process- 

ing configuration becoming readily available in the near 

future. Instead, we expect a local network of conventional 

single processor computers. The cost of a message trans- 

mission in this environment will be large enough to pre- 

clude the level of message communication in a pure actor 

system. By defining fewer larger actor objects one can 

perform more computation within each actor and reduce 

the degree of communication between actors. This makes 

it possible to achieve a match between the amount of 

parallelism and communication in the system and the capa- 

bilities of the available processors. 

There are other object oriented programming disci- 

plines which have properties similar to actors. In particu- 

lar, SIMULA (Birtwistle, et al. (1973)), Smalltalk (IngaUs 

(1978)), and "abstract data type" languages like CLU 

(Liskov, et al. (1977)). A thorough comparison of these 

programming languages would be of interest, but would 

take a considerable amount of effort, and is outside the 

intent of this paper. We adopted the actor formalism 

because it most closely matched SBA's requirements, it 

provided a sound theoretical basis to build upon, and it 

promised to yield the most compact and efficient imple- 

mentation of the programming system that we sought. 

Section 2 introduces an example which will be referred 

to throughout the paper. It will be used to demonstrate 

both how actors are defined, and how applications can be 

implemented as a collection of communicating actor ob- 

jects. Section 3 describes the basic constructs in the actor 

language, and completes the definition of the major actors 

in the example application. Section 4 describes additional 

features not needed in the example. Section 5 deals with 

the implementation, in particular, those aspects of the 

r l 

IPERSON ~-~ 

INAHE: ERIC[ 
I I CALENDAR ~I 

t 

i CALENDAR I 
I I 

PERSON 
NAME: SUE I 

I I 
INAME: JOE I 

iTii i 
I 

i CALENDAR I 
I I 

Figure 1. Scheduling a Meeting. 

- I 
/ I N A M E :  SAM i 

L ',CALENDAR Ijl~ 
iTiT i 

I I 

I CALENDAR 1 
L J 

68 



implementation concerning performance. Section 6 sum- 

marizes applications built with the current implementation. 

Section 7 summarizes the paper and describes the current 

status of the project. 

2. An Example. 

As an example of a business application implemented 

as a collection of actors, we consider the process of sched- 

uling a meeting. A MEETING can be partially character- 

ized by a list of its PARTICIPANTS, its DURATION and 

the TIME of the meeting. (We ignore other aspects of 

meetings such as topic, location, etc.) A meeting can be 

scheduled by inspecting the CALENDAR of each PER- 

SON on the participant list, and scheduling the meeting for 

the earliest time period of the required duration which all 

calendars indicate to be currently unscheduled. 

We will implement the scheduling process with the 

following actor types: MEETING, PERSON, CALEN- 

DAR, TIME INTERVAL, T I M E I N T E R V A L L I S T ,  

LIST, FIRST, and NEXT. Figure 1 depicts the major 

actors involved, with the arrows emanating from each 

actor representing its "acquaintances"--other actors known 

to it, and with which it can communicate. The scheduling 

process could proceed as follows: 

1. A MEETING actor is created with a LIST of PERSON 

actors as its PARTICIPANTS acquaintance. The du- 

ration field is initialized. 

2. The MEETING actor cycles over the PERSON actors 

on its LIST of PARTICIPANTS. It (asynchronously) 

broadcasts itself to all of the CALENDAR actors 

belonging to those PERSONs. 

3. The CALENDAR actors, upon receipt of an unsche- 

duled MEETING,  create and return a 

TIME INTERVAL LIST containing the 

TIME INTERVALs which a) are currently free, and 

b) exceed the DURATION required for the MEET- 

ING. 

4. When a returned TIME INTERVAL LIST is re- 

ceived, the MEETING actor sends it to the POSSI- 

BILITIES acquaintance,  which is also a 

TIMEwlNTERVAL LIST. POSSIBILITIES updates 

it's state to the intersection of its current state with 

the state of the TIME INTERVAL LIST message. 

5. When all CALENDAR actors have responded, the 

MEETING sets its TIME field to be the TIME of the 

first TIME INTERVAL in its POSSIBILITIES ac- 

quaintance. The newly scheduled MEETING actor 

again broadcasts itself to the original set of CALEN- 

DARs for inscription. 

This solution to the scheduling problem exploits many 

of the properties of actors we feel to be useful. The PER- 

SON and CALENDAR actors can be resident on separate 

personal computers, and distribution is obtained by merely 

sending messages to those actors. When MEETING 

broadcasts itself to the CALENDARs it initiates concur- 

rent execution of the CALENDARs, thus taking advantage 

of natural parallelism in the application. 

3. Actors. 

Defining Actor Types. 
Actor types are defined using the actor language, 

which is built on a subset of PL/I .  An actor type defini- 

tion has the following structure: 

1. An ACTOR statement, giving the name and attributes 

of the actor type. 

2. Zero or more INSTORE statements declaring instance 

variables. 

3. Zero or more DECLARE statements declaring automat- 

ic variables. 

4. Zero or more ACCEPT statements defining the actor's 

responses to messages. 

5. Subroutines which can be invoked from within the AC- 

CEPT clauses. 

6. An END statement. 

Figure 2 shows the overall structure of the definition of 

the MEETING actor described in the preceding example. 

MEETING: ACTOR SERIAL; 
INSTORE 

PARTICIPANTS ACQ, 
DURATION FIXED, 
TIME FIXED, 
COUNT FIXED, 
POSSIBILITIES ACQ; 

DECLARE 
P ACQ; 

ACCEPT('CREATE') 

ACCEPT('TIME INTERVAL LIST') 
° ,  • 

END; 

Figure 2. Outline of MEETING actor script. 

One of the attributes which can be specified in the 

ACTOR statement is SERIAL. When specified, it forces 

the messages sent to an instance of the actor to be proc- 

essed sequentially. Specifying NONSERIAL allows con- 

current invocations of an actor. 

The data types supported for automatic and instance 

variables are the PL / I  data types plus the ACQUAIN- 

TANCE (ACQ) data type. An acquaintance variable can 

69 



contain the name of an actor. Having the name of an 

actor allows reference to that actor in a message transmis- 

sion. The internal form of the name is not revealed to the 

programmer. 

The INSTORE variables define the contents  of in- 

stance storage for actors of the type being defined. The 

instance storage of an actor is a piece of storage which 

identifies the actor type, and contains variables whose 

values represent the current state of the instance. This 

state persists from one invocation of the actor to the next. 

Instance storage, therefore, is the permanent  representa- 

tive of the actor instance within the computing system. 

When an actor serves as the message in a transmission, it 

is the instance storage which is actually transmitted. 

Each A C C E P T  statement  identifies a message type to 

be accepted, and the code to be executed upon receipt of a 

message of the specified type. If the code for an accept 

clause comprises more than one statement,  it is enclosed in 

a DO-END block. 

The source language specification for an actor type is 

compiled. This compilation process produces an executa- 

ble script file and a template for the instance storage. In- 

stance storage for actor 's  of type MEETING would be 

formatted as shown in Figure 3. 

0 SCRIPT_ACQ 

4 PARTICIPANTS 

8 POSSIBILITIES 

12 0 

16 DURATION 

20 TIME 

24 COUNT 

Figure 3. Instance Storage for MEETING Actors. 

The SCRIPT ACQ field is a required acquaintance varia- 

ble which identifies a system defined SCRIPT actor. All 

instances of a given type point to a common SCRIPT actor 

which identifies the name of the type and the location of 

the executable script. Instance storage is allocated from a 

heap, and a garbage collector is used to reclaim the in- 

stance storage of actors which can no longer be accessed 

(i.e. those which no other actors have as acquaintances).  

Acquaintance variables are separated from the other varia- 

bles in instance storage to facilitate garbage collection. 

Creating Actor Instances. 

An instance of an actor is created explicitly with a 

CREATE operation. 

CREATE(type,parameter) 

CREA TE causes instance storage for an actor of type 

"type" to be allocated. If the script for that type contains 

an A C C E P T ( ' C R E A T E ' )  clause, the script is invoked and 

the create clause executed. The create clause specifies 

processing to be performed at the time of creation. The 

"parameter" in the CREATE operation is an actor which 

can be referenced in the create clause. In the absence of 

an A C C E P T ( ' C R E A T E ' )  clause, the instance storage for 

an actor is created with uninitialized instance variables. 

CREATE is a function which returns the new actor as its 

value. 

Actor Communication. 

An actor communicates  with it 's acquaintances by 

sending them messages. Send operations are provided for 

initiating message transmissions. A message transmission 

has four components  which are set by the send operations. 

The first two are the target, which is the actor to receive 

the message, and the message actor itself. A third compo- 

nent, the customer, is the actor which should receive the 

reply message if one is generated as a result of the mes- 

sage transmission.  The customer is frequently,  but  not 

necessarily always, the actor initiating the send operation. 

The last component  in a message transmission, called the 

client, is a system defined actor used for synchronization, 

as will be described later. Note that all four components  

of a message transmission are necessarily acquaintances of 

the actor performing the send operation (the "sender") .  

The sender itself is not automatically a component  of the 

resulting message transmission, although it may function as 

the target, message or customer. 

Asynchronous  communicat ion is provided by a 

SENDC (Send-Continue) operation, 

SENDC (target ,message ,customer, cl i ent). 
The SENDC operation provides a "fork" capability, as- 

ynchronously sending the message to the target. Control 

returns immediately to the sender (i.e., the message will 

not. necessarily have been processed), and the target and 

sender execute concurrently. In a SENDC operation one 

can specify all four components  of the message transmis- 

sion. If either the customer or client is not specified it 

defaults to the current customer or client, respectively, of 

the invoking actor. 

The system provides three send operations for synch- 

ronous message communication. For all three, the sender 

specifies only the target and message components  of the 

message transmission. The customer  component  is set 

according to the type of send operation performed. The 

client component  is always set to the client of the sender. 

SENDR(target,message) 

70 



A S E N D R  (Send-Rep ly )  opera t ion ,  provides  a s y n c h r o -  

nous  t r ans fe r  of  con t ro l  s imilar  to the  p rocedura l  call- 

re turn  mechan i sm.  The  sender  serves  as the  cus tomer ,  and  

waits  for  a reply message .  The  S E N D R  opera t ion  re tu rns  

an  acqua in tance  ident i fying a reply message .  

SEND(target,message) 

A SEND opera t ion ,  is identical  to S E N D R  except  it does  

no t  expect  a re turn  message ,  and  if one  is genera ted ,  it is 

ignored.  

SENDE(target,message) 

A S E N D E  (Send-End)  opera t ion,  differs f rom the o thers  

in tha t  the  invocat ion  of the  sender  is te rminated .  The  

sender ' s  cur ren t  cu s t omer  serves  as the  cus t omer  for the  

message  t ransmiss ion ,  ra ther  than  the  sender  itself, as in 

the  o ther  two synch ronous  send  operat ions .  As  a result ,  

any  reply message  genera ted  by this t r ansmiss ion  will be 

re tu rned  directly to this cus tomer .  A S E N D E  opera t ion  is 

funct ional ly  equiva lent  to 

RETURN( SENDR( target ,message ) ) 
but  avoids an  unneces sa ry  change  of  con tex t s  dur ing  the  

re turn  processing.  It is a conven ien t  m e a n s  of forward ing  

a message  to ano the r  ac tor  for  processing.  

Be tween  any  pair of  actors,  mes sages  are gua ran teed  

to be processed  in the  order  in which  they  are sent .  For  

any  one  actor  the  messages  are p rocessed  in the  order  of  

arrival. 

I n v o e a t i o n  o f  A c t o r s .  

Every  message  t r ansmiss ion  causes  a new invoca t ion  

of the  target  actor.  If the  ta rge t ' s  ins tance  s torage  is cur-  

rent ly residing on secondary  s torage,  it is read  into main  

memory .  If the  script  for  actors  of  the  t a rge t ' s  type  is no t  

resident ,  it is dynamica l ly  loaded. A u t o m a t i c  s torage  is 

p rovided  on  a s tack,  and  cont ro l  is t r ans fe r r ed  to the  

ac tor ' s  script. The  script  execu tes  the  accept  c lause  corre-  

sponding  to the  type of the  message  received.  

Special a cqua i n t ance  va lues  m a y  be accessed  dur ing  

execut ion .  These  va lues  are c o n s t a n t  dur ing  any  g iven  

invoca t ion  of  an  actor ,  a l t hough  they  m a y  change  f rom 

one  invocat ion  to the  next.  These  special  va lues  are: 

SELF - the  name  of the  execut ing  actor  ins tance.  

M E S S A G E  - the  n a m e  of the  actor  whose  receipt,  as 

a message ,  caused  the  cur ren t  invocat ion.  In  an  

A C C E P T  clause for a " C R E A T E " ,  M E S S A G E  is 

the  n a m e  of  a pa r ame t e r  actor.  

C U S T O M E R  - the  n a m e  of the  actor  which  will re-  

ceive any  reply f rom the  cur rent  invocat ion.  

C L I E N T  - the  client for  the  cur ren t  invocat ion.  

N U L L  - the  emp ty  actor  reference.  

N O T H I N G  - the  value  which ,  w h e n  used  in a R E -  

T U R N  s t a t e m e n t ,  will supp re s s  the  s end in g  of  a 

reply to the  cus tomer .  

W h e n  the  ta rget  ac tor  comp le t e s  p roces s ing  of  the  

received message  it re turns  ei ther  an  ac tor  acqua in tance  

ident i fy ing an actor  which  cons t i tu tes  the  re turn  message ,  

a N U L L  acqua in tance ,  or  N O T H I N G .  

The  process ing  pe r fo rmed  by an  actor  in response  to 

the  messages  it accepts  is i n d e p e n d e n t  of  the  m a n n e r  in 

which  they  are sent .  Its p rocess ing  is the  same  wh e th e r  

mes sages  are sent  via S E N D R ,  SEND,  S E N D E  or S E N D C  

opera t ions .  The  ac tor  which  sends  a message ,  however ,  

mus t  be aware  of  the  k ind of r e sponse  genera ted  by the  

target  ac tor  w h e n  it receives  m e s s a g e s  of  the  type being 

sent .  In part icular ,  it is an  error  to send  a message  via a 

S E N D R  opera t ion  if the  process ing  of  tha t  message  will 

no t  eventua l ly  p roduce  a valid reply message .  

S e t  and  G e t  R e f e r e n c e s .  

The  code in an  ac tor ' s  script  m a y  refer  to the  ins tance  

var iables  of  ano the r  ac tor  by us ing  the  fol lowing syntax.  

acquaintance->type-name.instance-variable-name 

The  mean ing  of  such  a re fe rence  depends  upon  where  it 

appears  in a s t a t emen t .  If it is the  target  of  an  ass ign-  

men t ,  the  m e a n i n g  is tha t  a new  value  is to be placed in 

the  n a m e d  ac tor ' s  ins tance  s torage.  This  is called a s e t  

reference .  W h e n  the  exp re s s ion  appea r s  in a n o t h e r  con-  

text,  it is a get  reference ,  and  m e a n s  tha t  the  cu r ren t  value 

of  the  var iable  in the  n a m e d  ac tor ' s  ins tance  s torage  re- 

places the  express ion  in tha t  context .  

The  use  of  set  and  get  re fe rences  appears  to violate 

the  rule tha t  actors  m a y  only  inspec t  and  modi fy  their  o wn  

ins tance  s torage.  However ,  the  violat ion is only  apparent .  

These  exp re s s ions  are  compi led  into ob jec t  code  which  

(when  necessary)  crea tes  and  sends  one  of  a special  set  of  

mes sage  actors  to the  actor  which  owns  the  ins t ance  s tor-  

age. These  m e s s a g e s  are  p roce s sed  by accep t  c lauses  

which  are implicitly included in the  ac tor ' s  script  because  

of  its i n s t ance  var iables .  T h e s e  implicit  accep t  c lauses  

s imply upda te  or  re turn  the  value  of  an  ins tance  variable.  

Thus ,  the  ac tor  itself pe r fo rms  the  reques ted  modif ica t ion  

or re turns  the  r eques ted  value. The  paren the t ica l  refer-  

ence  is to the  fact  tha t  the  ob jec t  code  m a y  directly access  

the  ac tor ' s  ins tance  s torage  w h e n  the  resul ts  of  a direct  

r e fe rence  are ind i s t ingu ishab le  f r om those  ob ta inab le  by  

send ing  a message .  Not ice  tha t  this  sy s t em does  not  in-  

heren t ly  provide the  benef i t s  of  " in fo rma t ion  h id ing" ,  as 

found  in the  abs t rac t  da ta  type  languages .  Use r s  who  wish 

to app rox ima te  those  bene f i t s  m a y  replace  the  implicit  

71  



MEETING: ACTOR SERIAL; 
INSTORE 
PARTICIPANTS ACQ, 
DURATION FIXED, 
TIME FIXED, 
COUNT FIXED, 
POSSIBILITIES ACQ; 

DECLARE 
P ACQ; 

ACCEPT('CREATE') 
DO; 

( I n i t i a l i z e  PARTICIPANTS and DURATION. 
Set POSSIBILITIES to a TIME INTERVAL LIST 
encompassing a l l  of the future. - 

I n i t i a l i z e  TIME and COUNT to zero.) 
DO P = SENDR(PARTICIPANTS,CREATE('FIRST')) 

REPEAT SENDR(PARTICIPANTS,CREATE('NEXT')) 
WHILE(P 9= NULL); 

SENDC(P->PERSON.CALENDAR,SELF); 
COUNT = COUNT + I ;  

END; 
END; 

ACCEPT('TIME INTERVAL_LIST') 
DO; 
SEND(POSSIBILITIES,MESSAGE); 
COUNT = COUNT - I ;  
IF COUNT = 0 THEN 
DO; 
TIME = SENDR(POSSIBILITIES,CREATE('FIRST')) 

->TIME INTERVAL.TIME; 
DO P = SENDR(PARTICIPANTS,CREATE('FIRST')) 

REPEAT SENDR(PARTICIPANTS,CREATE('NEXT')) 
WHILE(P 9= NULL); 

SENDC(P->PERSON.CALENDAR,SELF); 
END; 

END; 
END; 

END; 

Figure 4. Specification for M E E T I N G  actors. 

accept  c lauses  for  the  special  set  and  get  mes sages  with 

c lauses  which explicitly filter or prohibi t  access  to ins tance  

variables.  

Completion of the example. 

We now re turn  to the  p rob lem of schedul ing  a mee t -  

ing. With  the  facilities descr ibed so far,  we can  show how 

some  of the  actors  cons t i tu t ing  the  solut ion migh t  be im- 

p lemented .  

First ,  Figure  4 comple tes  the  def ini t ion of  the  M E E T -  

ING actor  which  was  out l ined  in Figure  2. The  overall  

func t ion ing  of this  ac tor  has  been  descr ibed  in sec t ion 2, 

and  will no t  be r epea t ed  here.  Not ice ,  however ,  

M E E T I N G ' s  use  of  the  S E N D C  ope ra t i on  to a synch ro -  

nous ly  b roadcas t  itself to the  C A L E N D A R s  of all P E R -  

SONs  on  its list of  P A R T I C I P A N T S .  The  first b roadcas t  

occurs  in the  A C C E P T ( ' C R E A T E ' )  c lause  to r eques t  

available t ime intervals .  The  second  one  a n n o u n c e s  the  

t ime of  the  mee t ing  af ter  receipt  of  the  f inal  t ime interval  

list. 

Figure  5 shows  the actors  involved in the  opera t ion  of  

t ime in terval  lists. Such a list cons i s t s  of  a m a in  

T I M E  I N T E R V A L  LIST ac to r  p lus  a s ing ly - l inked  

cha in  of  E L E M E N T  actors .  T I M E  I N T E R V A L  LIST 

ac tors  m u s t  have  the  S E R I A L  a t t r ibu te  becau se  the  in-  

s t ance  variables ,  H E A D  and  C U R R E N T ,  can  be modi f i ed  

dur ing  an invocat ion ,  and  the re  is no gua ran t ee  tha t  mul t i -  

p le  u s e r s  w o n ' t  s i m u l t a n e o u s l y  s e n d  to  a 

T I M E  I N T E R V A L  LIST. (Note ,  in cont ras t ,  tha t  an  

E L E M E N T  actor  is only  k n o w n  to the  ac tor  which  c rea ted  

it. Because  of  the  pa t t e rn  of  m e s s a g e s  sen t  to E L E M E N T  

actors ,  it is clear tha t  they  do no t  need  to be  SERIAL,  

even  t hough  they,  too, modi fy  their  i n s t ance  s torage . )  

In  t he  A C C E P T ( ' C R E A T E ' )  c l a u se ,  a 

T I M E I N T E R V A L L I S T  initializes its ins tance  s torage ,  

and  re tu rns  its own  n a m e  to its cus tomer .  U p o n  receipt  of  

a T I M E  I N T E R V A L  message ,  it c rea tes  an d  cha ins  a 

new E L E M E N T  actor.  (The  cha in ing  process  is ass i s ted  

by the  " C R E A T E "  code  in the  E L E M E N T  scr ipt . )  It 

t hen  se ts  the  V A L U E  acqua in t ance  of  the  new  E L E M E N T  

actor  to the  n a m e  of  the  new  T I M E  I N T E R V A L  wi th  

the  s t a t emen t :  

HEAD->ELEMENT.VALUE=MESSAGE; 

A FIRST message  causes  a T I M E  I N T E R V A L  LIST to 

posi t ion its C U R R E N T  acqua in t ance  at the  H E A D  of  its 

list of  E L E M E N T s ,  and  t hen  to send  itself a N E X T  m es -  

sage. A N E X T  message  causes  it to upda te  its C U R R E N T  

acqua in tance ,  and  t hen  to re turn  the  resul t  of  a get  opera -  

t ion for the  V A L U E  field of  its old C U R R E N T  E L E -  

M E N T  with the  s t a t emen t :  

RETURN(TEMP->ELEMENT.VALUE); 

4. Additional Facilities. 

Actor Names. 
Users  of  the  sys t em only know that  an  acqua in tance  

var iable  con ta ins  the  " n a m e "  of an  actor  with which  it can  

communica te .  The  internal  fo rm of  the  n a m e  is not  re- 

vealed.  The  imp lemen ta t i on ,  however ,  r ecognizes  th ree  

d i f fe ren t  k inds  of  names ,  local names, global names, and 

external names. The  local n a m e  of an  actor  is s imply the  

address  of  i t ' s  ins tance  s torage.  It provides  direct  access  

to an  actor,  bu t  only  exists  while an  actor  is res ident  in 

ma in  memory .  Local  n a m e s  are not  pe rmanen t l y  ass igned,  

and  if an  ac to r  m o v e s  f rom one  node  to an o th e r  or  to 

s e c o n d a r y  s to rage  and  back  to ma in  m e m o r y ,  it will at 

d i f fe rent  t imes  have  d i f fe rent  local names .  A global  n a m e  

72 



TIME INTERVAL LIST: ACTOR SERIAL; 
INSTORE 
HEAD ACQ, 
CURRENT ACQ; 

DECLARE 
TEMP ACQ; 

ACCEPT('CREATE') 
DO; 
HEAD,CURRENT = NULL; 
RETURN(SELF); 

END; 
ACCEPT('TIME INTERVAL') 
DO; 
HEAD = CREATE('ELEMENT',HEAD); 
HEAD->ELEMENT.VALUE = MESSAGE; 

END; 
ACCEPT('FIRST') 
DO; 
CURRENT = HEAD; 
SENDE(SELF,CREATE('NEXT')); 

END; 
ACCEPT('NEXT') 
DO; 
IF CURRENT = NULL THEN RETURN(NULL); 
TEMP = CURRENT; 
CURRENT = CURRENT->ELEMENT.FPTR; 
RETURN(TEMP->ELEMENT.VALUE); 

END; 
ACCEPT('TIME INTERVAL LIST') 
DO; 
(Modify current state by intersecting 
with the state of the message.) 

END; 
END; 

Figure 5. Additional actor 

identifies an actor at another  node. It is implemented as 

the local name of a system defined actor, of type GLOB-  

AL, which contains the remote node 's  identifier and the 

local name of the actor within that node. An external 

name acquaintance value may be used to identify an ac tor  

which has been assigned an external name (a character  

string). It is implemented as the local name of a system 

defined actor, of type E X T E R N A L ,  which contains the 

actual character string name. An actor identified by it 's 

external name may be resident in main memory,  on sec- 

ondary storage, or at another  node. 

When an actor is created it only has a local name. It 

can be assigned an external name by means of a TITLE 

operation. 

TITLE(acquaintance,external name) 

where "acquaintance" identifies the actor instance to be 

named, and "external name"  is a character string of the 

form " type-name. ins tance-name".  An external name must  

be unique within each node. The system does not enforce 

uniqueness of external names throughout  the whole net- 

ELEMENT: ACTOR; 
INSTORE 
FPTR ACQ, 
VALUE ACQ; 

ACCEPT('CREATE'); 
DO; 
FPTR = MESSAGE; 
RETURN(SELF); 

END; 
END; 

TIME INTERVAL: ACTOR; 
INSTORE 
TIME FIXED, 
DURATION FIXED; 

END; 

FIRST: ACTOR; 
END; 

NEXT: ACTOR; 
END; 

specifications for meeting problem. 

work, and use of an external name will always result in a 

reference to a local actor with that name before it results 

in a reference to an actor at a remote node with the same 

name. 

The external name of an actor can be used in scripts 

as an acquaintance constant which references the actor. 

For  example, the phrase 

'PERSON.ERIC'->PERSON.CALENDAR 

can be used as a set or get reference to the C A L E N D A R  

instance variable of the actor instance ERIC of type PER- 

SON. An acquaintance constant  may appear  anywhere in 

a script that an acquaintance variable is allowed, except as 

the target of an assignment operation. 

Storing Actors. 
Actors  which have been assigned an external  name 

may be saved on secondary storage with a STORE opera-  

tion, 

STORE(acquaintance) 

73 



Stored actors persist across session boundaries, and exist 

until explicitly destroyed. A stored actor is accessible via 

it 's external name, and will be automatically read into 

main memory and assigned a local name when referenced. 

It is not sufficient to store just the specified actor. 

Take for instance a named TIME INTERVAL LIST 

actor which uses a linked list of unnamed E L E M E N T  

actors to identify the elements of the list. One could not 

store just the list actor, but would have to also include the 

list of element actors. Because of this, a STORE opera- 

tion results in storing the following collection of actors. 

1. The specified named actor. 

2. All unnamed acquaintances accessible from that actor 

without an intervening named actor. 

3. For each accessible named actor, a system E X T E R N A L  

actor containing the actor 's external name. 

The collection of actors is stored in the form of a single 

variable length record called a stored actor record. 

Remote Actor Invocations. 

If the target of a message transmission identifies an 

actor at a remote node, then a system REMOTE actor is 

invoked in place of the target. The REMOTE actor inter- 

faces with the network to cause the remote invocation of 

the target actor. The message actor is either moved to the 

remote node or a GLOBAL actor identifying the me~sage 

is sent in its place. At the remote node the GLOBAL 

actor is interpreted as a global name acquaintance. 

When an actor is moved to another node, it is done by 

forming a network actor record. A network actor record is 

the same as a stored actor record, except that the originat- 

ing actor need not be named. Additionally, the acquain- 

tances identified by local names, can either be included in 

the record or be represented by system GLOBAL actors. 

A network actor record is a portable form of an actor 

which can be sent around the network. Upon arrival at a 

node it is read into memory by the same mechanism used 

to read stored actor records. 

Synchronization. 

Several mechanisms are provided for synchronizing 

actor execution. Together, these mechanisms constitute a 

general architecture within which any desired synchroniza- 

tion control structure can be built. 

At the lowest level, actors can be marked non-serlal or 

serial. A message t ransmission to a non-serial  actor can 

cause the invocation of that actor to occur immediately, 

even when the actor is already executing (with a message 

from a separate transmission). In order to support such 

concurrent processing, the code in all actor scripts is re- 

entrant.  Transmissions to non-serial  actors are never 

queued. On the other hand, a transmission to a busy serial 

actor is placed on a FIFO queue of transmissions associat- 

ed with that actor. This queue supports the guarantee, 

mentioned earlier, that messages will be processed by an 

actor in the order in which they are received. 

The second level of synchronizat ion is the client. 

Clients provide the "join" that corresponds to the "fork" 

capability given by send-continue (SENDC). CLIENT is 

a system actor type. When a non -N U LL client actor is 

specified for a transmission started by a SENDC opera- 

tion, it keeps track of the asynchronous  execution path 

started by that SENDC. In particular, it keeps a count of 

such execution paths, incrementing the count for each new 

SENDC with that client, and decrementing the count when 

each path terminates. When the count reaches zero--i.e., 

all asynchronous execution paths begun with that  client 

have ended--the client actor initiates a transmission with 

target and message actors which were specified at the 

creation of the client. 

• . °  

MYCLIENT = CREATE CLIENT(SELF, 
CREATE('RESUME')); 

SENDC(ACTOR1,MESSAGE1,,MYCLIENT); 
SENDC(ACTOR2,MESSAGE2,,MYCLIENT); 
RETURN(NOTHING); 

ACCEPT('RESUME') 

Figure 6. Using Clients for Synchronization. 

In the example in Figure 6, MYCLIENT is a client 

actor whose target acquaintance contains the name of the 

actor which created it (because of the reference to SELF), 

and whose message acquaintance is an actor of type RE- 

SUME. Before control is relinquished by the R E T U R N  

statement,  the two SENDC operations will have caused the 

client's count to be set at 2. When the processing initiated 

by MESSAGE1 and MESSAGE2 has been completed, the 

client's count will have been decremented to zero. The 

client will then send the RESUME actor as a message to 

the actor which created it. Notice, finally, that the target 

actor has an accept clause for messages of type RESUME; 

this is the point at which the "join" operation occurs. 

Activities are provided at the third level of synchroni- 

zation. They are similar to clients in that they can monitor 

the progress of asynchronous  execution paths,  and they 

allow the specification of a transmission which is to occur 

at the termination of those paths. In addition, activities 

may be cancelled and are capable of being hierarchically 

nested within one another. If an actor executing as part of 

one activity issues a SENDC operation with another activi- 

ty specified as client, then the transmission issued at the 

74 



completion of the child activity is considered to be part of 

the parent activity. Parent activities may execute concur- 

rently with their children, but they are never considered 

complete until all of their children have either terminated 

or been cancelled. 

• ° °  

ACTIVITYI = CREATE_ACTIVITY(SELF, 
CREATE('RESUMEI')); 

ACTIVITY2 = CREATE_ACTIVITY(SELF, 
CREATE('RESUME2')); 

SENDC(ACTORI,MESSAGEI,,ACTIVITYI); 
SENDC(ACTOR2,MESSAGE2,,ACTIVITY2); 

ACCEPT('RESUMEI') 
DO; 
CANCEL(ACTIVITY2); 

END; 
ACCEPT('RESUME2') 
DO; 
CANCEL(ACTIVITYI); 

END; 

Figure 7. Using Activities for Synchronization. 

An example of the use to which the ability to cancel 

activities may be put appears in Figure 7. When either 

activity completes, the first action of the "join" code is to 

cancel the other activity. (Note that the join for the can- 

celled activity will never be executed.) If ACTOR1 and 

ACTOR2 were, for example, trying to produce the same 

result using different algorithms, this type of control struc- 

ture would allow the cancellation of the losing algorithm as 

soon as the other one succeeds. 

The activity mechanism is entirely implemented with 

the system actor type, ACTIVITY. The script for activity 

actors is illustrated in Figure 8. The instance variables of 

activity actors include a fixed point child count, as well as 

target, message, and parent activity. The child count and 

the parent activity acquaintance form the basis for the 

ability to nest activities. Every new activity becomes a 

child of the activity under which it is created. Part of the 

creation process for activities involves sending a 

YOU HAVE A CHILD message to the parent, caus- 

ing it to increment its child count. When an activity and 

all of its children have finished, it transmits its message 

acquaintance to the target,  and sends a 

YOU LOST A CHILD message to its parent. The 

parent, in turn, decrements its child count. 

When created, each activity actor creates a client 

actor to manage its own actor invocations (as opposed to 

those of its children). Upon completion of these invoca- 

ACTIVITY: ACTOR SERIAL; 
INSTORE 
TARGET ACQ, 
MSG ACQ, 
ORIGINATOR ACQ, 
PARENT ACTIVITY ACQ, 
MY CLIENT ACQ, 
MY WORK IS DONE BIT(1), 
CHILD COUNT FIXED; 

ACCEPT(TCREATE ' ) 
DO; 
( I n i t i a l i ze  the TARGET and MSG acquaintances. 
Set PARENT ACTIVITY to the name of the current 
ac t iv i t y ,  or NULL i f  there is none.) 
IF PARENT ACTIVITY 9= NULL THEN 

SEND(PARENT ACTIVITY, 
CREATE('YOU HAVE A CHILD')); 

ORIGINATOR = CUSTOMER; - - 
MY WORK IS DONE = 'O'B; 
CHILD COUNT = O; 
MY CLIENT = CREATE CLIENT(SELF, 

- CREATE('YOUR WORK IS DONE )); 
RETURN(MY_CLIENT); 

END; 
ACCEPT('YOU HAVE A CHILD') 
CHILD COUNT = CHILD COUNT+i; 

ACCEPT('YOU_LOST_A_CHILD') 
DO; 
CHILD COUNT = CHILD COUNT-I; 
IF CHILD COUNT = 0 & MY WORK IS DONE THEN 
DO; 

IF PARENT ACTIVITY ~= NULL THEN 
SEND(PARENT ACTIVITY, 

CREATET'YOU LOST A CHILD')); 
SENDC(TARGET,MSG,ORIGINATOR,NULL); 

END; 
END; 

ACCEPT('YOUR_WORK IS DONE') 
DO; 
MY WORK IS DONE = ' i 'B ;  
IF-CHILD COUNT = 0 THEN 
DO; 

IF PARENT ACTIVITY 4= NULL THEN 
SEND(PARENT ACTIVITY, 

CREATE('YOU LOST A CHILD')); 
SENDC(TARGET,MSG,ORIGINATOR,NULL); 

END; 
END; 

END; 

Figure 8. Definition of the ACTIVITY actor. 

tions, the client sends a YOUR WORK IS DONE 

message to the activity actor which created it. When this 

happens, the activity will terminate as soon as it detects 

that its child count has reached zero. 

S. Performance Considerations. 

It must be possible to develop actor-based applications 

which meet acceptable levels of performance, i.e., per- 

formance comparable to a direct implementation in a high 

75 



level language. The following summarizes those aspects of 

the actor programming system directed at performance. 

1. Actor scripts are compiled, rather than interpreted. 

Compiling will generally yield superior performance. 

The ability to define larger actors, of a size compara- 

ble to a procedure, allows one to capitalize fully on 

compiler optimization techniques. 

2. Messages are passed by reference, and are copied only 

when it is necessary for transmission across a network. 

This is particularly important in an actor system where 

messages are actors and can be large. Actors, such as 

the MEETING actor in the example, frequently pass 

themselves to an acquaintance as a message, even 

though a much smaller message could have sufficed. 

3. Symbolic references to actors (external names) are 

resolved to direct memory addresses. This avoids 

having to resolve symbolic names on every reference. 

In addition, a hash table is used to provide quick reso- 

lution of external names of actors already resident in 

main memory. 

4. An executing actor-based application will typically cre- 

ate a large number of actors. Thus, actor instances 

must be inexpensive to create and have a minimal 

amount of space overhead. The processing cost of 

creating an actor is essentially the cost of allocating a 

structure in an area. The storage costs for an actor 

can be as small as 8 bytes, a 4 byte header and 4 

bytes for the obligatory script acquaintance. 

5. The large number of send operations which will be 

performed in a typical application make the cost of a 

send operation a significant factor in overall perform- 

ance. Some send operations will be unavoidably ex- 

pensive, requiring, allocation of a stack, resolving ex- 

ternal names, network transmissions, dynamic loading 

of an actor's instance storage from secondary storage, 

and dynamic loading of a script. The majority of send 

operations, however, will be synchronous (SEND, 

SENDR, SENDE) transmissions where both the target 

actor's instance storage and script are already resident 

in main memory. The system design strives to make 

these transmissions as efficient as a normal procedure 

call. When the send mechanism is invoked the target 

acquaintance is the address of the target 's instance 

storage, and the first acquaintance in that instance 

storage block points to a SCRIPT actor containing the 

address of the script to be executed. The send mecha- 

nism can simply transfer control to the identified 

script. The script runs on the current stack, i.e. the 

stack of the sending actor invocation. For SEND and 

SENDR operations it executes immediately above the 

sender, and for SENDE operations in replaces the 

sender (the sender's invocation is terminated). The 

net effect is that the target actor invocation occurs 

just above the customer actor invocation, as if the 

target had been called by the customer. This allows a 

message to be returned to the customer via a normal 

procedural return statement. 

6. The process of storing an actor on secondary storage, 

and subsequently reading it back into main memory is 

a potential performance problem. The process in- 

volves a potentially large collection of actors. The 

format of the actors within a stored actor record is 

kept the same as in main memory, with acquaintances 

converted to offsets from the beginning of the record. 

This makes it possible, when reading a stored actor, to 

process the entire record as a unit, and avoid separate 

allocations for each component actor. The stored 

actor record is read directly into a block of storage 

within the area used for instance storage. A single 

pass is made over the the record to convert the ac- 

quaintance record offsets to local names. In addition, 

SCRIPT actors are not stored. Instead, their names 

are placed at the end of the stored actor record, and 

they are recreated when the record in read. External 

name acquaintances are intentionally not resolved 

when a stored actor is read. The send mechanism 

dynamically resolves the external name acquaintances 

upon first use, thus reestablishing connections to 

named actors which were severed during the storing 

process. A beneficial by-product of storing and read- 

ing an actor is that the actor and its unnamed acquain- 

tances become physically adjacent in main memory. 

6. Applications. 

Part of the motivation for building the actor system is 

to explore the usefulness of the actor model of program- 

ming for building substantial applications. This explora- 

tion naturally involves the programming of actual applica- 

tions. 

An application is a subsystem of actors communicating 

with each other. The application designer must approach 

his task differently than if he were using a traditional pro- 

gramming system. For example, he cannot use global data 

structures, since actors provide none. He must decompose 

his problem into active entities--which he then implements 

as actors--rather than passive data structures operated 

upon by arbitrary control structures. The interfaces 

among these entities must be well-defined. Distributed 

applications become easier to define, since distribution is 

built into the actor model. Asynchrony is much more 

accessible than in other systems, and the designer should 

76 



incorporate it in intelligent ways. As the designer gains 

experience with the actor model, he is rewarded with in- 

creased ease in developing and implementing system struc- 

tures for his applications. 

We summarize some of the applications built, and 

being built, using actors. 

Our first application was an implementation of the 

OMEGA knowledge representation system (Hewitt, Attar- 

di, and Simi (1980)). OMEGA represents knowledge as a 

network of "descriptions". At the lowest level, descrip- 

tions represent the objects of the world being modelled, 

and the links in the network represent inheritance and 

attribution relationships among those objects. The more 

interesting aspect of OMEGA is that descriptions may also 

represent axioms which further describe the semantics of 

the world being modelled. 

The implemented system provides a language in which 

OMEGA statements and requests can be entered. State- 

ments are transformed into their corresponding descrip- 

tions and merged with the network of existing descriptions. 

Requests explore the inheritance and attribution links, 

under the control of the axioms in existence, and yield 

information to the user. Some of the description types 

supported, along with examples of the description lan- 

guage, are given below: 

Atomic - d 0 h n 

Ins tance-  (a c h i l d )  

With-attribution - (wi th  sex real e) 

Inheri tance-  ( is John (a chi ld (with sex male))) 
Variable - =x 

Implication - (=> ( i s  =x (a c h i l d  (w i th  sex 

m a l e ) ) )  ( i s = x  (a boy) ) )  

The implementation represents each description type 

as an actor type; actor instances, therefore, represent indi- 

vidual descriptions. The acquaintances of a description 

actor include the other descriptions linked to it in the 

semantic network. Additional actors provide such func- 

tions as user communication, input parsing, output format- 

ting, and triggering of user-supplied axioms. Altogether, 

about forty actor types, with scripts ranging in size from 

two lines to four-hundred lines of actor code, were re- 

quired for the implementation. During an OMEGA ses- 

sion, thousands of actor instances may be in existence at 

one time. 

A second actor application is an end-user window 

interface to the SBA system. The interface gives the user 

simultaneous access to multiple overlapping windows on 

his terminal screen. All windows are active at all times; 

this contrasts with systems - like Smalltalk - in which the 

user interacts with a single "active" window, and in which 

activation of a new window forces a "focus shift" on the 

part of the user. Individual SBA windows are controlled 

by instances of a WINDOW actor type. Each one can 

change its own name, size, color, border, and height with 

respect to other windows. A window can also initiate 

office applications, manipulate multiple graphical images 

belonging to the applications, and scroll over these images, 

all in response to user commands. The window actors 

communicate with an actor of type SCREEN by sending it 

PICTURE messages. The screen actor manipulates the 

multiple pictures of windows, creating, moving, and over- 

lapping them on command; it also notifies the window 

actors of user activity at the terminal, by sending modified 

PICTURE actors. 

The SBA window system provides a unified applica- 

tion development and execution environment at an office 

workstation. Additional applications, also built of actors, 

operate within the window environment. These applica- 

tions are "graphical" in the sense that they communicate 

with WINDOW actors about their status by sending and 

receiving PICTURE messages. They include: 

SBA tables and files which .support Query-by- 

Example operations, and whose underlying relation- 

al access method was simulated by an OMEGA 

network, 

- SBA forms, 

- a personal calendar, 

- a continuously running digital clock, and 

- a lightpen-operated pocket calculator. 

We must not forget that one of the more important 

applications of actors to date has been the implementation 

of the actor system itself. The use of actors to implement 

clients, activities, scripts, directories, loaders, and names, 

testifies to the generality of the actor programming model. 

7 .  S u m m a r y  a n d  S t a t u s .  

The actor-based programming system takes the formal 

theory of actors and adapts it for use as a language and 

system for developing applications. Whereas actor systems 

have previously been used only in artificial intelligence 

research, they can now be employed in other areas. In 

particular, we propose to use ours for programming dis- 

tributed business applications. An application is imple- 

mented as a collection of independently executing actors 

communicating by messages. They can be distributed over 

a network of computing nodes, and permanently stored on 

disk. A naming architecture allows actors to communicate 

in a uniform way regardless of their location or status. 

Actor types are defined through a PL/I-like language 

which specifies both a storage area to be associated with 

77 



the actor and its behavior in response to the messages it 

accepts. This behavior may involve changing the state of 

its instance storage area, creating other actor instances, 

initiating communication with its actor acquaintances, and 

returning a message to the actor which caused it to be 

invoked. Mechanisms are provided for synchronizing 

concurrently executing actors. 

While the system retains the desirable properties of 

actors, performance has been a primary concern, and we 

have been careful to avoid the inefficiencies usually found 

in object-oriented message-passing systems. The size of 

an actor specification can vary from two lines to hundreds 

of lines of PL/I- l ike code, and is compiled with an optim- 

izing compiler. Messages are passed by reference; and are 

only copied when transported across the network. Names 

of acquaintance actors are dynamically bound to direct 

memory references upon first use. 

Status. 
The prototype processor for the actor language was 

built using an existing optimizing compiler for a subset of 

the P L / I  language together with the standard P L / I  macro 

preprocessor (I.B.M. (1976)) .  Syntactic and semantic 

limitations imposed by the macro preprocessor resulted in 

the implemented language differing somewhat from the 

descriptions given in this paper (see Byrd (1980)).  Con- 

tinued development of the actor system should include the 

implementation of a compiler for the actor language. 

Some of the described language features, such as the 

ability to cancel activities, have not yet been implemented. 

The concept of inheritance, which is similar the Smalltalk 
notion of superclass, is needed, as well as a mechanism by 

which an actor can delegate the handling of a message to 

another  actor. The information hiding properties of the 

abstract  data type languages, such as CLU, should be 

made available. The serial /non-serial  attribute could be 

made a function of the message type being processed, and 

an actor 's instance storage could be allowed to dynamical- 

ly vary in size. 

The existing prototype implementation is for a single 

actor node in a V M / 3 7 0  virtual machine. It is being ex- 

tended to multiple actor nodes residing in a network of 

virtual machines. This will simulate the intended process- 

ing configuration of a local network of small computers, 

and allow experimentation with distributed actor applica- 

tions. This will be a vehicle for conducting research on 

the difficult problems confronting distributed applications, 

including deadlock detec t ion/prevent ion ,  crash recovery, 

and distributed garbage collection. An actor-based system 

should provide the potential  for unique and interesting 

solutions to problems in these areas. 

Acknowledgements. 
We wish to thank Carl Hewitt  for many long and 

exciting discussions of the actor formalism and the descrip- 

tion system OMEGA, especially during his stay at the IBM 

T. J. Watson Research Center  in the summer of 1980. We 

also thank John Lucassen for his energetic work during the 

early stages of the actor system implementation, and Ken 

Niebuhr,  the other member  of the SBA group, for his 

insight during many discussions. 

References. 

Baker, H. G., Jr. (1978) Actor Systems For Real-Time 
Computation, M.I.T. Ph.D. Thesis. Laboratory 
of Computer  Science Technical  Repor t  
M I T / L C S / T R -  197. 

Birtwistle, Dahl, Myhrhaug, and Nygaard (1973) SlMULA 
Begin, Auerbach. 

Byrd, R. J. (1980) "Macros and Coding Conventions for 
SBA Boxes," SBA project memo. 

de Jong, S. P. (1980) "The System for Business Automa- 
tion (SBA): A Unified Application Development 
System," in IFIPS Congress 80 Proceedings, 
North Holland Publishing Company. 

de Jong, S. P., and R. J. Byrd (1980) "Intelligent Forms 
Creation in the System for Business Automation 
(SBA)," I.B.M. Research Report RC 8529. 

Hewitt, C. (1977) "Viewing Control  Structures as Patterns 
of Passing Messages," in Artificial Intelligence 
Vol. 8, pp. 323-364. 

Hewitt, C. (1980) "The Apiary Network Architecture for 
Knowledgeable Systems," M.I.T. AI Lab Memo. 

Hewitt, C., G. Attardi, and M. Simi (1980) "Knowledge 
Embedding in the Description System OME- 
GA," in Proceedings of the First National Annual 
Conference on Artificial Intelligence American 
Association for Artificial Intelligence, August 
1980. 

I.B.M. (1976) OS P L / I  Checkout and Optimizing Compi- 
lers: Language Reference Manual, I.B.M. form 
GC33-0009.  

Ingalls, D. H. H. (1978) "The Smalltalk-76 Programming 
System: Design and Implementation," in Confer- 
ence Record of the Fifth Annual ACM Symposium 
on Principles of Programming Languages, pp. 9- 
16. 

Lieberman, H. (1981) "A Preview of Act 1," M.I.T. AI 
Lab Memo 625. 

Liskov, B., A. Snyder, R. Atkinson,  and C. Schaffert  
(1977) "Abstract ion Mechanisms in CLU,"  in 
Communications of the ACM, Vol. 20, no. 8, pp. 
564-576. 

Zloof, M. M., and S. P. de Jong (1977) "The System for 
Business Automation (SBA): Programming Lan- 
guage," in Communications of the ACM, Vol. 20, 
no. 6, pp. 267-280. 

78 


