
Scalable agreement: Toward ordering as a service

Manos Kapritsos
UT Austin

Austin, TX - USA
manos@cs.utexas.edu

Flavio P. Junqueira
Yahoo! Research
Barcelona, Spain

fpj@yahoo-inc.com

Abstract
Replicated state machines use agreement protocols such
as Paxos to order client requests. These protocols are not
scalable and can quickly become a performance bottle-
neck as the degree of fault-tolerance and the demand for
throughput performance increase.

We propose a scalable agreement protocol that can
utilize additional resources to provide higher through-
put, while guaranteeing linearizability for client requests.
Our protocol can build on existing optimizations, as it
can use protocols like Paxos as a building block. A pre-
liminary performance evaluation shows a throughput in-
crease of 50%−179% over a baseline strategy, even with-
out adding any hardware; and with additional hardware
we are able to achieve even higher performance gains.

1 Introduction

Replicated systems are often used with critical large-
scale applications to guarantee availability despite faults,
and state machine replication (SMR) is a well-known
technique to implement such highly available services.
A replicated state-machine comprises a number of repli-
cas that run an agreement protocol to ensure that all
replicas execute the same sequence of operations, thus
guaranteeing a consistent state across all replicas. State-
machine replication has been widely explored in the lit-
erature [5, 12, 13, 14, 16, 20] and is used in real sys-
tems [4, 11].

As online services increase in importance, scalability
becomes a critical feature. As the number of clients of
such services increases over time, higher throughput be-
comes critical, but it is even more important to have ways
to increase throughput performance over time without
reengineering the system. In fact, given the number of
applications relying upon replicated components in Web-
scale infrastructures, such as with Google, Amazon, Mi-
crosoft, and Yahoo!, it is a viable solution for such in-

frastructures to run ordering as a service if a practical
solution is available.

Existing SMR solutions increase the throughput of
such systems by fine-tuning implementations of agree-
ment protocols. However, the benefits offered by this ap-
proach are rather limited. A truly scalable solution is ide-
ally able to increase the observed throughput by adding
more hardware resources to the system.

Traditionally, scalability has been achieved through
partitioning of the state space [8]. With partitions, how-
ever, the order guarantees are only satisfied for each in-
dividual partition, and they are not suitable to the cases
we envision. Previous solutions not involving partition-
ing cannot provide a way to scale the throughput of the
system, even if additional hardware is available. In fact,
if more machines are added to an ensemble of repli-
cas to increase its degree of fault tolerance, the message
complexity of the agreement protocol increases and the
throughput decreases. As the number of tolerated faults
increases beyond f = 1, the agreement protocol rapidly
becomes the bottleneck of the system. We therefore be-
lieve that scaling the agreement protocol is critical for
overall scalability of replicated systems.

Previous work has focused mostly on improving the
performance of a single, non-scalable, fault-tolerant
cluster (e.g., 2f+1 replicas running the Paxos protocol).
There is the notion of fault scalability [1] for replication
protocols, which indicates how much performance de-
grades as the number of tolerated faults increases. The
FSR protocol of Guerraoui et al. [10] is an example of a
protocol that does not degrade throughput with the num-
ber of tolerated faults due to the use of a ring topology.
Other protocols [2, 3] have improved the performance
of fault-tolerance protocols in wide-area settings through
the use of a hierarchical structure. However, none of
these protocols can scale their performance when addi-
tional machines are available. Ideally, a scalable solu-
tion is based on solid principles and it does not need to
rely upon fine-tuning of code, even though such improve-

1

ments can be used regardless.
We present a scalable agreement protocol that in-

creases throughput with the number of available ma-
chines. Given the interest in leader-based protocols both
in the literature (e.g., Paxos and Zyzzyva) and in practice
(e.g., Chubby and ZooKeeper), our proposed approach
targets applications that use such protocols. Here we
also concentrate on a solution for crash-tolerant systems
given our interest in services such as ZooKeeper that
tolerate crash faults. Our strategy, however, is generic
and not dependent upon a particular choice of a failure
model. It is consequently possible to adapt the approach
we present here to protocols for weaker failure models
such as BFT protocols. We discuss our initial proto-
type and discuss some preliminary results on an Emulab
testbed to show its ability to scale. It is out of the scope
of this short paper, however, to discuss how to incorpo-
rate our proposed protocol into real applications. This is
subject of future work.

Note that the scalability of the agreement protocol
does not imply that the execution of requests also scales.
This paper proposes an approach to scale the perfor-
mance of the agreement protocol. As such, it targets sce-
narios in which the agreement is potentially the bottle-
neck, which can happen for a few reasons: (a) the ex-
ecution is not CPU-intensive; (b) the assumption of a
weak failure model (e.g., Byzantine), leading to complex
message patterns; or (c) the large number of tolerated
failures, as discussed above. Finally, there are opera-
tional advantages in using the same agreement cluster to
support multiple execution clusters, as discussed in Sec-
tion 5.

In the context of Replicated State Machine systems we
use agreement protocols to agree on a specific ordering
of requests. In that sense we will use the terms “agree-
ment” and “ordering” interchangeably in the remainder
of this paper.

Rationale There are three main parts that influence the
performance of an agreement protocol: CPU, network,
and disk. In such systems, CPU is used to process mes-
sages and in some cases verify the integrity of messages
using CRC checks, MAC authenticators or digital sig-
natures, depending on the failure model assumed. In
leader-based protocols, such as Paxos, the volume of
messages the leader has to process is higher compared
to followers, which may cause the CPU of the leader
to be the main system bottleneck. In fact, the volume
of messages increases with the value of tolerated replica
crashes f , thus aggravating the problem as we increase
the degree of replication of a protocol. In such cases,
splitting the functionality of the leader across multiple or
even all machines leads to higher performance.

The network usage reflects the complexity of the pro-

tocol: a higher volume of messages implies a higher net-
work utilization. Typically, leader replicas have to ma-
nipulate a larger number of messages compared to fol-
lowers. Spreading the load of the leader more evenly
across a number of servers enables a higher utilization
of switch bandwidth, which is important for data-center
applications. Other protocols in the literature have made
a similar point [18]. Mencius [16] uses the network re-
sources available in the system more uniformly and pro-
vides higher throughput compared to Paxos. Our pro-
posal is more aligned with the techniques Mencius pro-
poses. Mencius, however, targets WAN settings and it
does not thoroughly explore the scalability aspect of its
approach. Chain [9] uses a pipeline message pattern in-
stead to deal with high-contention scenarios and leads
to a good utilization of the switch bandwidth. This is a
different design approach, which gives different perfor-
mance trade-offs compared to typical leader-based pro-
tocols.

Finally, replicas use disks to log messages, guaran-
teeing that critical protocol information persists across
crashes and recoveries. For correctness, replicas have
to force writes to disk, which tends to slow down write
operations. There are techniques, however, to mitigate
this problem, such as using group commits [7] and write-
ahead logging [17]. Even with such techniques, we can
make a better use of multiple disks with implementations
that are disk-bound. Having multiple disks is quite com-
mon in modern server configurations. By having sub-
groups of replicas as opposed to one single group, we
can split the work of a replica across multiple sub-groups
and assign each sub-group to a disk, thus leveraging the
I/O bandwidth of multiple disks to process the traffic of
distinct groups in parallel. The use of multiple disks is
not unique to our approach, and our point is simply that
the presence of multiple sub-groups facilitates the design
and implementation of such techniques.

Model We consider asynchronous distributed systems,
where the speed of processes can vary arbitrarily and
message delays are unbounded. We do not assume a spe-
cific failure model (i.e. crash-fail, Byzantine), as the ap-
proach we describe is not bound to a specific one. How-
ever, the details of the final solution are different depend-
ing on the failure model considered. In this paper, we use
a crash-failure model to illustrate our approach.

In the following sections, we outline a solution to
the problem of scalable agreement. We first present an
overview of the system architecture and then present the
protocol that achieves total ordering of requests, while
being able to scale its throughput as more resources are
added to the system. Finally, we present a preliminary
performance evaluation of our prototype.

2

ExecutionClients Ordering clusters

Machine

Leader process

Follower process

Figure 1: Architecture outline: 5 clusters of 3 processes
each are being deployed on 5 machines. For each cluster,
we use a rectangle to identify all machines participating
in the cluster. Each cluster sends their ordered requests
to the execution cluster.

2 Overall architecture

To improve specific aspects of an RSM system, it is im-
portant to follow a modular approach in the design of
the architecture. To this end, we separate ordering from
the execution as with previous work [20]. In our archi-
tecture, clients send requests to an ordering module, im-
plemented with multiple replicas, that establishes a total
order for the proposed requests. Once ordered, requests
are sent to the execution module to be executed, and re-
sponses are sent directly back to the clients.

Traditional RSM systems use a single cluster of or-
dering replicas that cooperate to provide a total order of
requests. For crash-tolerant systems, it is sufficient to
have 2f +1 replicas, when up to f replicas can fail [13].
Our architecture leverages multiple such clusters, each
of them providing a total order for only a part of the re-
quests. We use a virtual slot scheme at the execution
replicas to combine all these partial orders into a single
total order for all requests. We describe this scheme in
more detail in the following section.

Figure 1 demonstrates the design of our system. We
assume N ≥ 2f+1 machines, each running one or more
processes, and establish N clusters of 2f + 1 processes
each. These clusters overlap to fully utilize the available
machines. Moreover, the leader of each of these clusters
runs on a different node. This is important as the leader
of an ordering cluster is much more loaded than the repli-
cas and spreading the leaders on all available machines
distributes the load more evenly.

Each ordering cluster receives a subset of the client re-
quests and runs an agreement protocol to establish a total
order on those requests. It then forwards that order to all
execution replicas, according to the protocol that we de-
scribe in the next section. The execution replicas receive
the requests from the ordering clusters and use the virtual
slot scheme to establish the total order on those requests.
They execute the requests in that order and send the re-

sponse back to the clients. Note that from now on we
will use the term replica to refer to a process running on
a machine, rather than the machine itself.

3 Protocol briefing

3.1 Overview
The goal of this protocol is to coordinate multiple order-
ing clusters to provide a total order on all requests. As
mentioned before, each of the clusters runs a traditional
agreement protocol to establish a total order on a fraction
of the requests. However, naively combining the distinct
sequences from each cluster yields a partial rather than a
total order on all requests. We use the following scheme
to provide the total order.

We establish a virtual slot sequence that corresponds
to the total order in which requests should be executed.
The ith cluster can only propose requests in slots of the
form i+ kN , where k is an integer and N is the number
of clusters. Note that a cluster can propose a batch of re-
quests for the same slot, since those requests are ordered
amongst themselves.

This scheme takes advantage of the static configura-
tion of the clusters to transform the partial ordering pro-
vided by the clusters into a total ordering. However, there
are several aspects of this new approach that make it dif-
ferent from a traditional RSM system. We outline the
most important ones below.

3.2 Backlog of requests
An execution replica must execute requests in the order
specified by the virtual slot sequence. That means that
the execution replicas cannot execute the requests as they
arrive. Upon receipt of an ordered request, an execu-
tion replica checks its sequence number n and compare
it with the last executed sequence number s. If n < s,
then the request is not executed and a response is sent
back to the client according to a reply cache similar to
[6]. If n > s, then the request is put in a backlog of re-
quests, to be executed when all previous slots have been
executed. Only if n = s is the request executed immedi-
ately. After executing a request with sequence number n,
the replica executes all consecutive backlogged requests,
starting from n+ 1, until no such request can be found.

3.3 Skipping
Since the execution replicas can only execute requests
in the specified total order, it is important that a single
slow cluster does not delay the other clusters. To avoid
these delays, when a cluster sends a batch of requests
to the execution cluster, it also sends a 〈FLUSH, n〉 to

3

all other clusters, where n is the sequence number of
the slot being filled. Upon receipt of such a message,
the leader of each cluster “flushes” any sequence num-
ber that is smaller than n by proposing no-ops for those
slots. Specifically, it sends a 〈SKIP, n[]〉 to all execution
replicas, where n[] is an array of sequence numbers that
it skips (i.e. proposes a no-op for). This mechanism is
similar in spirit to skipping in Mencius [16].

Note that it is not necessary to send the FLUSH mes-
sage to all replicas of a cluster. Instead, we can send
it only to the leader. Even if the leader is crashed, the
sending cluster eventually learns who the new leader is
(Section 3.4) and immediately sends a FLUSH message
to that replica, thus flushing all previous slots.

3.4 Failure handling
A replica failure has a dual nature in this context. First
of all, the replica’s cluster will take appropriate actions
after detecting this failure. If the replica was the leader, a
new leader must be elected. We allow the internal cluster
mechanisms to work as designed. However, we add some
extra messages to enable the inter-cluster communication
and to make sure the load is well balanced.

When the leader of a cluster fails, the new leader will
send a message to all clusters notifying them of its lead-
ership, so that FLUSH messages are sent to it. Also, when
any replica fails, the cluster can broadcast this informa-
tion to all clusters and they can choose to rearrange the
assignment of replica processes to machines. It is im-
portant to keep in mind that in this context a replica is
not a machine, but rather a process running on one of the
machines. We try to balance the load on all machines by
having one cluster leader on each machine and roughly
the same number of replica processes. However, failures
can change this balance and a reassignment might be in
order. For example, if 2 replicas that execute on ma-
chine M fail, then some replica from machine K must
be moved onto M to balance the load. There are sev-
eral design choices in this area that we would like to ex-
plore. We assume, however, that replica failures are not
frequent enough to cause state transfers to become a bot-
tleneck.

3.5 Client connections
Another aspect that needs to addressed is client-related
state. As opposed to the majority of the related work,
we allow clients to have multiple outstanding connec-
tions. This is an important feature required of real ap-
plications to improve per-client throughput. To accom-
modate this feature, there are two design options, each
with its own advantages and disadvantages. The first one
is to let clients send requests to all clusters. In this case,

the requests should carry a client sequence number and
the execution replicas should make sure to execute the re-
quests in the order specified by the client. Client ordering
can be achieved by using a backlog of requests for each
client, similar to the one described in Section 3.2. Also,
a session must be maintained from the client to the exe-
cution replicas, to make sure that if the client crashes, all
its backlogged requests are garbage collected. This ap-
proach is convoluted and induces some overhead to the
execution replicas.

The second approach is to have each client send re-
quests to a specific cluster. This way, the cluster can
make sure that requests are ordered with respect to the
FIFO constraints at the client. There is no need for a
client backlog or a client session at the execution repli-
cas. This approach, however, might lead to load imbal-
ance, especially if there are very few clients. However,
even with as few as N clients (where N is the number of
clusters), we can achieve good load balancing, as long as
the clients issue roughly the same load to the system.

The second approach is in general more desirable due
to its simplicity. Our prototype implements both ap-
proaches, but the experiments presented in the evaluation
only use the second approach.

Independent of the approach we use, clients do not
need to know the internal details of the agreement pro-
tocol. They send the requests to the appropriate cluster
(either random or fixed, depending on the approach) and
the cluster guarantees that the request is totally ordered.
To satisfy request dependencies, we can use similar tech-
niques proposed in the literature. Same-client dependen-
cies (FIFO) can be identified using sequence numbers,
while dependencies across clients (causal) can be iden-
tified using vector clocks. The system must check both
dependencies at execution time and delay a request if it
arrives out of order, as described above.

4 Evaluation

We have implemented the system described in Sections
2 and 3, and deployed it on an Emulab testbed 1 with 28
quad-core 2.4GHz Xeon machines. We report on the per-
formance benefits we have observed using our system.
We have not included logging to stable storage, in order
to focus on the benefits of additional CPU resources and
clarify the presentation of our results.

We start with the traditional approach, which we use
as our baseline; a single fault-tolerant cluster of 2f + 1
replica processes on 2f + 1 machines. We then deploy
our system by adding more clusters to the existing hard-
ware, without adding any more machines. The resulting
configuration has 2f +1 clusters of 2f +1 replicas, run-

1http://boss.cias.utexas.edu

4

 0

 50

 100

 150

 200

 250

1-3 3-3 5-3 6-3 7-3 1-5 5-5 7-5 9-5 1-7 7-7 9-7

Th
ro

ug
hp

ut
s (

K
re

qu
es

ts/
se

c)

 f=1 f=2 f=3

Figure 2: Throughput performance of various configura-
tions. The 1-N bars are the baseline systems with a single
cluster on N machines. The M-N counterparts denote a
configuration of M clusters of N replicas each, deployed
on M machines.

ning on 2f + 1 machines total. This configuration has
a significant advantage over the single cluster, since it
spreads the role of the leader on all machines, thereby
yielding much higher throughput.

We proceed by adding more machines (and corre-
sponding clusters) to the system. Our generic configura-
tion has N clusters of 2f +1 replicas, running on N ma-
chines. We report on the observed throughput as we vary
N and f . Figure 2 summarizes our performance results.
We demonstrate the throughput of traditional clusters for
f = 1, 2 and 3 (denoted as 1-3, 1-5 and 1-7). Next to
each of these bars, we demonstrate the performance of
our prototype system when multiple clusters are used in-
stead. For example, the 5-3 bar shows the performance
of a system with 5 ordering clusters of 3 replicas each,
deployed on 5 machines total (the same as our architec-
ture example in Figure 1).

It is clear that traditional systems can benefit substan-
tially from this approach. For all values of f , the sys-
tem throughput increases significantly, even when no ex-
tra machines are added, just by deploying multiple over-
lapping clusters (configurations 3-3, 5-5 and 7-7). By
spreading the role of the leader across multiple machines,
we are able to balance the load of the system more evenly
and consequently obtain a higher performance compared
to the approach that uses a single cluster. Naturally, this
gain is more pronounced as the value of f increases.
Note that this throughput gain comes at no additional
hardware cost. For example, both the 1-7 and the 7-7
configurations use 7 machines each, but the 7-7 has a
180% throughput gain over the 1-7.

By adding more machines to the system, we can
stretch our performance gains even further, while keep-

ing the benefit of load balancing. Our approach allows us
to split the load more evenly among all the available ma-
chines and also to make use of the extra resources, which
is not achievable with the state-of-the-art protocols. We
note here that, as we add machines to a “N-N” (e.g. 3-3)
configuration, the gain is not linear as one would expect,
but rather sub-linear. We suspect that it is possible to en-
gineer the system to eliminate bottlenecks and overcome
this negative effect, but further investigation is necessary
to determine whether our suspicion is correct.

5 Discussion

Ordering service. We believe such an approach will
enable the deployment of an ordering service, which will
be available to multiple applications. Large infrastruc-
tures for Web-scale applications often comprise a num-
ber of replicated systems that could use an ordering ser-
vice as part of an application that implements strong con-
sistency guarantees. Managing a single cluster is oper-
ationally cheaper compared to having each application
implement its own strategy or even having an ordering
library and having an instance running for each applica-
tion.

A key point that makes it feasible is that this service is
able to scale its throughput on demand, without having
to partition or re-engineer the whole system. Naturally,
a key aspect to design and implement is reconfiguration.
This feature is necessary to enable dynamic addition of
machines, and there are techniques in the literature we
can leverage to enable configuration changes [15]. We
think that an ordering service is more desirable than
application-specific ordering clusters, which are much
harder to maintain and cannot scale throughput as the
throughput requirements increase beyond their capacity.

Applications. Our technique is based on the active
replication approach [19]. Consequently, it is more di-
rectly applicable to protocols and systems that imple-
ment this approach, such as Paxos, PBFT and Zyzzyva.
The principle of separating ordering from execution ap-
plies naturally to those systems and can therefore bene-
fit from our approach with only minimal modifications.
For systems that have the leader propagating state up-
dates, like Chubby and ZooKeeper, separating ordering
from execution is more complex. As a result, the existing
implementations of both Chubby and ZooKeeper require
modifications to be able to accommodate our approach
to scalability.

Bottlenecks. In the settings we have been working
with and in our experience so far with our prototype, the

5

leader CPU seems to be the main bottleneck for leader-
based protocols, especially when messages have a small
number of bytes. Spreading the role of the leader across
multiple nodes alleviates this problem and distributes
more uniformly the CPU of the system. Our approach
also enables a better utilization of disks for logging, since
the sub-group strategy is able to split the I/O traffic across
multiple disks, thus increasing the performance of I/O
operations. Finally, if the network is the main bottle-
neck, then spreading the role of the leader might be of lit-
tle help. Although our technique spreads the load across
multiple replicas, the overall number of messages is still
the same. One advantage of our strategy is the concrete
scenario of a data-center application, where all replicas
are connected to the same switch. In this case, spreading
the network traffic more evenly across replicas enables
a more efficient utilization of the switch backplane and
leads to higher throughput performance.

References

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K.
Reiter, and J. J. Wylie. Fault-scalable Byzantine fault-
tolerant services. In SOSP ’05: Proceedings of the twen-
tieth ACM Symposium on Operating Systems Principles,
pages 59–74, New York, NY, USA, 2005. ACM.

[2] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Customizable
fault tolerance for wide-area replication. In SRDS ’07:
Proceedings of the 26th IEEE International Symposium
on Reliable Distributed Systems, pages 65–82, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[3] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-
rotaru, J. Olsen, and D. Zage. Steward: Scaling Byzantine
fault-tolerant systems to wide area networks. In In Pro-
ceedings of the International Conference on Dependable
Systems and Networks, 2005.

[4] M. Burrows. The Chubby lock service for loosely-
coupled distributed systems. In OSDI ’06: Proceedings of
the 7th Symposium on Operating Systems Design and Im-
plementation, pages 335–350, Berkeley, CA, USA, 2006.
USENIX Association.

[5] M. Castro and B. Liskov. Practical Byzantine fault toler-
ance. In OSDI ’99: Proceedings of the third Symposium
on Operating Systems Design and Implementation, pages
173–186, Berkeley, CA, USA, 1999. USENIX Associa-
tion.

[6] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi,
M. Dahlin, and T. Riche. Upright cluster services. In
SOSP ’09: Proceedings of the ACM SIGOPS 22nd Sym-
posium on Operating Systems Principles, pages 277–290,
New York, NY, USA, 2009. ACM.

[7] D. Gawlick and D. Kinkade. Varieties of concurrency
control in IMS/VS fast path. In IEEE Database Eng. Bull.
8(2), pages 3–10, 1985.

[8] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers
of replication and a solution. In SIGMOD ’96: Proceed-
ings of the 1996 ACM SIGMOD International Conference
on Management of Data, pages 173–182, New York, NY,
USA, 1996. ACM.

[9] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić.
The next 700 BFT protocols. In EuroSys ’10: Proceed-
ings of the 5th European Conference on Computer Sys-
tems, pages 363–376, New York, NY, USA, 2010. ACM.

[10] R. Guerraoui, R. R. Levy, B. Pochon, and V. Quema. High
throughput total order broadcast for cluster environments.
In DSN ’06: Proceedings of the International Conference
on Dependable Systems and Networks, pages 549–557,
Washington, DC, USA, 2006. IEEE Computer Society.

[11] P. Hunt, M. Konar, F. Junqueira, and B. Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In
USENIX ATC’10: Proceedings of the USENIX An-
nual Technical Conference), Berkeley, CA, USA, 2010.
USENIX Association.

[12] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. SIGOPS
Oper. Syst. Rev., 41(6):45–58, 2007.

[13] L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems, 16(2):133–169, 1998.

[14] L. Lamport. Fast paxos. Distributed Computing,
19(2):79–103, Oct. 2006.

[15] L. Lamport, D. Malkhi, and L. Zhou. Reconfiguring a
state machine. SIGACT News, 41(1):63–73, 2010.

[16] Y. Mao, F. Junqueira, and K. Marzullo. Mencius: Build-
ing efficient replicated state machine for wans. In OSDI
’08: Proceedings of the 8th Symposium on Operating Sys-
tems Design and Implementation, pages 369–384, Berke-
ley, CA, USA, 2008. USENIX Association.

[17] R. J. Peterson and J. P. Strickland. Log write-ahead pro-
tocols and ims/vs logging. In PODS ’83: Proceedings
of the 2nd ACM SIGACT-SIGMOD symposium on Princi-
ples of database systems, pages 216–243, New York, NY,
USA, 1983. ACM.

[18] G. Santos, M. Correia, A. Bessani, and L. C. Lung. Spin
one’s wheels? Byzantine fault tolerance with a spin-
ning primary. In SRDS ’09: Proceedings of the 30th
IEEE Symposium on Reliable Distributed Systems, Nia-
gara Falls, USA, 2009.

[19] F. Schneider. Replication management using the state-
machine approach. In Distributed Systems, pages 169–
198. Addison Wesley, 1993.

[20] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
Byzantine fault tolerant services. SIGOPS Oper. Syst.
Rev., 37(5):253–267, 2003.

6

